2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第8章 平面解析幾何 第3節(jié) 圓的方程教學(xué)案 理(含解析)北師大版

上傳人:彩*** 文檔編號:104780992 上傳時間:2022-06-11 格式:DOC 頁數(shù):7 大?。?.51MB
收藏 版權(quán)申訴 舉報(bào) 下載
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第8章 平面解析幾何 第3節(jié) 圓的方程教學(xué)案 理(含解析)北師大版_第1頁
第1頁 / 共7頁
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第8章 平面解析幾何 第3節(jié) 圓的方程教學(xué)案 理(含解析)北師大版_第2頁
第2頁 / 共7頁
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第8章 平面解析幾何 第3節(jié) 圓的方程教學(xué)案 理(含解析)北師大版_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

18 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第8章 平面解析幾何 第3節(jié) 圓的方程教學(xué)案 理(含解析)北師大版》由會員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第8章 平面解析幾何 第3節(jié) 圓的方程教學(xué)案 理(含解析)北師大版(7頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、第三節(jié) 圓的方程 [考綱傳真] 1.掌握確定圓的幾何要素,掌握圓的標(biāo)準(zhǔn)方程與一般方程.2.初步了解用代數(shù)方法處理幾何問題的思想. 1.圓的定義及方程 定義 平面內(nèi)與定點(diǎn)的距離等于定長的點(diǎn)的集合(軌跡) 標(biāo)準(zhǔn) 方程 (x-a)2+(y-b)2 =r2(r>0) 圓心(a,b),半徑r 一般 方程 x2+y2+Dx+Ey+F=0, (D2+E2-4F>0) 圓心, 半徑 2.點(diǎn)與圓的位置關(guān)系 點(diǎn)M(x0,y0)與圓(x-a)2+(y-b)2=r2的位置關(guān)系: (1)若M(x0,y0)在圓外,則(x0-a)2+(y0-b)2>r2. (2)若M(x0,y0)

2、在圓上,則(x0-a)2+(y0-b)2=r2. (3)若M(x0,y0)在圓內(nèi),則(x0-a)2+(y0-b)2<r2. 1.圓心為坐標(biāo)原點(diǎn),半徑為r的圓的方程為x2+y2=r2. 2.以A(x1,y1),B(x2,y2)為直徑端點(diǎn)的圓的方程為(x-x1)(x-x2)+(y-y1)(y-y2)=0. [基礎(chǔ)自測] 1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯誤的打“×”) (1)確定圓的幾何要素是圓心與半徑. (  ) (2)方程x2+y2=a2表示半徑為a的圓. (  ) (3)方程x2+y2+4mx-2y+5m=0表示圓. (  ) (4)方程Ax2+B

3、xy+Cy2+Dx+Ey+F=0表示圓的充要條件是A=C≠0,B=0,D2+E2-4AF>0. (  ) [答案] (1)√ (2)× (3)× (4)√ 2.圓心為(1,1)且過原點(diǎn)的圓的方程是(  ) A.(x-1)2+(y-1)2=1    B.(x+1)2+(y+1)2=1 C.(x+1)2+(y+1)2=2 D.(x-1)2+(y-1)2=2 D [由題意得圓的半徑為,故該圓的方程為(x-1)2+(y-1)2=2,故選D.] 3.方程x2+y2+4mx-2y+5m=0表示圓的充要條件是(  ) A.<m<1 B.m<或m>1 C.m< D.m>1 B

4、 [由16m2-20m+4>0得m<或m>1.故選B.] 4.若點(diǎn)(1,1)在圓(x-a)2+(y+a)2=4的內(nèi)部,則實(shí)數(shù)a的取值范圍是(  ) A.(-1,1) B.(0,1) C.(-∞,-1)∪(1,+∞) D.a(chǎn)=±1 A [由題意可得(1-a)2+(1+a)2<4,即-1<a<1.故選A.] 5.(教材改編)圓C的圓心在x軸上,并且過點(diǎn)A(-1,1)和B(1,3),則圓C的方程為________. (x-2)2+y2=10 [設(shè)圓心坐標(biāo)為C(a,0), ∵點(diǎn)A(-1,1)和B(1,3)在圓C上, ∴|CA|=|CB|,即=, 解得a=2,所以圓心為C(2,

5、0), 半徑|CA|==, ∴圓C的方程為(x-2)2+y2=10.] 圓的方程 【例1】 (1)圓E經(jīng)過三點(diǎn)A(0,1),B(2,0),C(0,-1),則圓E的標(biāo)準(zhǔn)方程為(  ) A.2+y2=    B.2+y2= C.2+y2= D.2+y2= (2)過點(diǎn)A(1,-1),B(-1,1)且圓心在直線x+y-2=0上的圓的方程是(  ) A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2=4 C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2=4 (1)C (2)C [(1)設(shè)圓E的一般方程為x2+y2+Dx+Ey+F=0,

6、 由題意得解得 ∴x2+y2-x-1=0,即2+y2=.故選C. (2)∵圓心在直線x+y-2=0上,∴設(shè)圓心坐標(biāo)為(a,2-a). ∴圓的半徑r= =, 解得a=1,r=2,∴圓的方程為(x-1)2+(y-1)2=4.故選C.] [規(guī)律方法] 求圓的方程的兩種方法 (1)幾何法:根據(jù)圓的幾何性質(zhì),直接求出圓心坐標(biāo)和半徑,進(jìn)而寫出方程. (2)待定系數(shù)法:①若已知條件與圓心(a,b)和半徑r有關(guān),則設(shè)圓的標(biāo)準(zhǔn)方程,依據(jù)已知條件列出關(guān)于a,b,r的方程組,從而求出a,b,r的值; ②若已知條件沒有明確給出圓心或半徑,則選擇設(shè)圓的一般方程,依據(jù)已知條件列出關(guān)于D,E,F(xiàn)的方程組

7、,進(jìn)而求出D,E,F(xiàn)的值. (1)(2018·合肥二模)已知圓C:(x-6)2+(y-8)2=4,O為坐標(biāo)原點(diǎn),則以O(shè)C為直徑的圓的方程為(  ) A.(x-3)2+(y+4)2=100 B.(x+3)2+(y-4)2=100 C.(x-3)2+(y-4)2=25 D.(x+3)2+(y-4)2=25 (2)圓心在直線x-2y=0上的圓C與y軸的正半軸相切,圓C截x軸所得弦的長為2,則圓C的標(biāo)準(zhǔn)方程為________. (1)C (2)(x-2)2+(y-1)2=4 [(1)由題意可知圓心C為(6,8),則以O(shè)C為直徑的圓的方程為(x-3)2+(y-4)2=25.故選C.

8、 (2)設(shè)圓C的圓心為(a,b)(b>0),由題意得a=2b>0,且a2=()2+b2,解得a=2,b=1. 所以所求圓的標(biāo)準(zhǔn)方程為(x-2)2+(y-1)2=4.] 與圓有關(guān)的最值問題 【例2】 已知M(x,y)為圓C:x2+y2-4x-14y+45=0上任意一點(diǎn),且點(diǎn)Q(-2,3). (1)求|MQ|的最大值和最小值; (2)求的最大值和最小值. [解] (1)由圓C:x2+y2-4x-14y+45=0, 可得(x-2)2+(y-7)2=8, ∴圓心C的坐標(biāo)為(2,7),半徑r=2. 又|QC|==4, ∴|MQ|max=4+2=6, |MQ|min=4-2=2.

9、 (2)可知表示直線MQ的斜率k. 設(shè)直線MQ的方程為y-3=k(x+2),即kx-y+2k+3=0. 由直線MQ與圓C有交點(diǎn),所以≤2, 可得2-≤k≤2+, ∴的最大值為2+,最小值為2-. [母題探究] (1)(變化結(jié)論)在本例的條件下,求y-x的最大值和最小值. (2)(變換條件)若本例中條件“點(diǎn)Q(-2,3)”改為“點(diǎn)Q是直線3x+4y+1=0上的動點(diǎn)”,其它條件不變,試求|MQ|的最小值. [解] (1)設(shè)y-x=b,則x-y+b=0. 當(dāng)直線y=x+b與圓C相切時,截距b取到最值, ∴=2,∴b=9或b=1. 因此y-x的最大值為9,最小值為1. (2)∵

10、圓心C(2,7)到直線3x+4y+1=0上動點(diǎn)Q的最小值為點(diǎn)C到直線3x+4y+1=0的距離, ∴|QC|min=d==7. 又圓C的半徑r=2, ∴|MQ|的最小值為7-2. [規(guī)律方法] 與圓有關(guān)的最值問題的三種幾何轉(zhuǎn)化法 (1)形如μ=形式的最值問題可轉(zhuǎn)化為動直線斜率的最值問題. (2)形如t=ax+by形式的最值問題可轉(zhuǎn)化為動直線截距的最值問題. (3)形如m=(x-a)2+(y-b)2形式的最值問題可轉(zhuǎn)化為動點(diǎn)到定點(diǎn)的距離的平方的最值問題. (1)設(shè)P(x,y)是曲線x2+(y+4)2=4上任意一點(diǎn),則的最大值為(  ) A.+2 B. C.5 D.6

11、 (2)一束光線從點(diǎn)A(-1,1)出發(fā),經(jīng)x軸反射到圓C:(x-2)2+(y-3)2=1上的最短路徑的長是(  ) A.4 B.5 C.3-1 D.2 (1)A (2)A [(1)的幾何意義為點(diǎn)P(x,y)與點(diǎn)A(1,1)之間的距離.易知點(diǎn)A(1,1)在圓x2+(y+4)2=4的外部,由數(shù)形結(jié)合可知的最大值為+2=+2.故選A. (2)由題意可得圓心C(2,3),半徑r=1,點(diǎn)A關(guān)于x軸的對稱點(diǎn)A′(-1,-1),求得|A′C|==5,故最短路徑為|A′C|-r=5-1=4,故選A.] 與圓有關(guān)的軌跡問題 【例3】 (2019·衡水調(diào)研)已知直角三角形ABC的斜邊為AB

12、,且A(-1,0),B(3,0).求: (1)直角頂點(diǎn)C的軌跡方程; (2)直角邊BC的中點(diǎn)M的軌跡方程. [解] (1)法一:設(shè)C(x,y),因?yàn)锳,B,C三點(diǎn)不共線,所以y≠0. 因?yàn)锳C⊥BC,所以kAC·kBC=-1, 又kAC=,kBC=, 所以·=-1,化簡得x2+y2-2x-3=0. 因此,直角頂點(diǎn)C的軌跡方程為x2+y2-2x-3=0(y≠0). 法二:設(shè)AB的中點(diǎn)為D,由中點(diǎn)坐標(biāo)公式得D(1,0),由直角三角形的性質(zhì)知|CD|=|AB|=2.由圓的定義知,動點(diǎn)C的軌跡是以D(1,0)為圓心,2為半徑的圓(由于A,B,C三點(diǎn)不共線,所以應(yīng)除去與x軸的交點(diǎn)).

13、所以直角頂點(diǎn)C的軌跡方程為(x-1)2+y2=4(y≠0). (2)設(shè)M(x,y),C(x0,y0),因?yàn)锽(3,0),M是線段BC的中點(diǎn),由中點(diǎn)坐標(biāo)公式得x=,y=,所以x0=2x-3,y0=2y.由(1)知,點(diǎn)C的軌跡方程為(x-1)2+y2=4(y≠0),將x0=2x-3,y0=2y代入得(2x-4)2+(2y)2=4,即(x-2)2+y2=1.因此動點(diǎn)M的軌跡方程為(x-2)2+y2=1(y≠0). [規(guī)律方法] 求與圓有關(guān)的軌跡問題的四種方法 (1)直接法:直接根據(jù)題設(shè)給定的條件列出方程求解. (2)定義法:根據(jù)圓的定義列方程求解. (3)幾何法:利用圓的幾何性質(zhì)得出方程求

14、解. (4)代入法(相關(guān)點(diǎn)法):找出要求的點(diǎn)與已知點(diǎn)的關(guān)系,代入已知點(diǎn)滿足的關(guān)系式求解. 動點(diǎn)A在圓x2+y2=1上移動時,它與定點(diǎn)B(3,0)連線的中點(diǎn)的軌跡方程是(  ) A.(x+3)2+y2=4 B.(x-3)2+y2=4 C.(2x-3)2+4y2=1 D.2+y2= C [設(shè)中點(diǎn)M(x,y),則動點(diǎn)A(2x-3,2y).∵點(diǎn)A在圓x2+y2=1上,∴(2x-3)2+(2y)2=1,即(2x-3)2+4y2=1.故選C.] 1.(2018·全國卷Ⅲ)直線x+y+2=0分別與x軸,y軸交于A,B兩點(diǎn),點(diǎn)P在圓(x-2)2+y2=2上,則△ABP面積的取值范圍是

15、(  ) A.[2,6] B.[4,8] C.[,3] D.[2,3] A [圓心(2,0)到直線的距離d==2,所以點(diǎn)P到直線的距離d1∈[,3].根據(jù)直線的方程可知A,B兩點(diǎn)的坐標(biāo)分別為A(-2,0),B(0,-2),所以|AB|=2,所以△ABP的面積S=|AB|d1=d1.因?yàn)閐1∈[,3],所以S∈[2,6],即△ABP面積的取值范圍是[2,6].] 2.(2015·全國卷Ⅱ)過三點(diǎn)A(1,3),B(4,2),C(1,-7)的圓交y軸于M,N兩點(diǎn),則|MN|=(  ) A.2 B.8 C.4 D.10 C [設(shè)圓的方程為x2+y2+Dx+Ey+F=0,

16、 則解得 ∴圓的方程為x2+y2-2x+4y-20=0. 令x=0,得y=-2+2或y=-2-2, ∴M(0,-2+2),N(0,-2-2)或M(0,-2-2),N(0,-2+2),∴|MN|=4,故選C.] 3.(2015·全國卷Ⅰ)一個圓經(jīng)過橢圓+=1的三個頂點(diǎn),且圓心在x軸的正半軸上,則該圓的標(biāo)準(zhǔn)方程為________. 2+y2= [由題意知a=4,b=2,上、下頂點(diǎn)的坐標(biāo)分別為(0,2),(0,-2),右頂點(diǎn)的坐標(biāo)為(4,0).由圓心在x軸的正半軸上知圓過點(diǎn)(0,2),(0,-2),(4,0)三點(diǎn).設(shè)圓的標(biāo)準(zhǔn)方程為(x-m)2+y2=r2(00),則解得所以圓的標(biāo)準(zhǔn)方程為2+y2=.] - 7 -

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!