2019屆高中數(shù)學(xué) 專題1.2.1 函數(shù)的概念視角透析學(xué)案 新人教A版必修1
《2019屆高中數(shù)學(xué) 專題1.2.1 函數(shù)的概念視角透析學(xué)案 新人教A版必修1》由會員分享,可在線閱讀,更多相關(guān)《2019屆高中數(shù)學(xué) 專題1.2.1 函數(shù)的概念視角透析學(xué)案 新人教A版必修1(14頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、 1.2.1 函數(shù)的概念 【雙向目標(biāo)】 課程目標(biāo) 學(xué)科素養(yǎng) A.了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域;了解映射的概念. B.在實(shí)際情境中,會根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒?如圖象法、列表法、解析法)表示函數(shù). C.了解簡單的分段函數(shù),并能簡單應(yīng)用(函數(shù)分段不超過三段). a數(shù)學(xué)抽象:數(shù)學(xué)集合概念的理解、描述法表示集合的方法 b邏輯推理:集合的互異性的辨析與應(yīng)用 c數(shù)學(xué)運(yùn)算:集合相等時(shí)的參數(shù)計(jì)算,集合的描述法轉(zhuǎn)化為列舉法時(shí)的運(yùn)算 d 直觀想象:利用數(shù)軸表示數(shù)集、集合的圖形表示 e 數(shù)學(xué)建模:用集合思想對實(shí)際生活中的對象進(jìn)行判斷與歸類 【課標(biāo)知識】 知識提煉
2、 基礎(chǔ)過關(guān) 知識1:函數(shù)的概念 一般地,設(shè)A,B是兩個(gè)非空的數(shù)集,如果按照某種確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù),記作y=f(x),x∈A,其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,其集合{f(x)|x∈A}叫做函數(shù)的值域. 知識2:函數(shù)的表示方法 (1)解析法:就是用數(shù)學(xué)表達(dá)式表示兩個(gè)變量之間的對應(yīng)關(guān)系的方法. (2)圖象法:就是用圖象表示兩個(gè)變量之間的對應(yīng)關(guān)系的方法. (3)列表法:就是列出表格來表
3、示兩個(gè)變量之間的對應(yīng)關(guān)系的方法. 知識3:構(gòu)成函數(shù)的三要素 (1)函數(shù)的三要素是:定義域、對應(yīng)關(guān)系、值域; (2)兩個(gè)函數(shù)相等:如果兩個(gè)函數(shù)的定義域相同,并且對應(yīng)關(guān)系完全一致,則稱這兩個(gè)函數(shù)相等. 知識4:分段函數(shù) 若函數(shù)在定義域的不同子集上的對應(yīng)關(guān)系也不同,這種形式的函數(shù)叫做分段函數(shù),它是一類重要的函數(shù). 知識5:映射的概念 一般地,設(shè)A,B是兩個(gè)非空的集合,如果按某一個(gè)確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:A→B為從集合A到集合B的一個(gè)映射.
4、 知識6:復(fù)合函數(shù) 一般地,對于兩個(gè)函數(shù)y=f(u)和u=g(x),如果通過變量u,y可以表示成x的函數(shù),那么稱這個(gè)函數(shù)為函數(shù)y=f(u)和u=g(x)的復(fù)合函數(shù),記作y=f(g(x)),其中y=f(u)叫做復(fù)合函數(shù)y=f(g(x))的外層函數(shù),u=g(x)叫做y=f(g(x))的內(nèi)層函數(shù). ? 1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯(cuò)誤的打“×”) (1)對于函數(shù)f:A→B,其值域是集合B.( ) (2)函數(shù)y=()2與y=是同一個(gè)函數(shù).( ) (3)定義域與值域均相同的兩個(gè)函數(shù)是相等函數(shù).( ) (4)分段函數(shù)不是一個(gè)函數(shù),而是多個(gè)函數(shù).( ) (5
5、)若A=R,B={x|x>0},f:x→y=|x|,其對應(yīng)是從A到B的映射.( ) 2.函數(shù)f(x)=lnx-1(x)+x2(1)的定義域?yàn)?( ) A.(0,+∞) B.(1,+∞) C.(0,1) D.(0,1)∪(1,+∞) 3.設(shè)f(x)=2x,x<0,(x,x≥0,)?則f(f(-2))等于( ) A.-1 B.4(1)??????? C.2(1)?????????????????D.2(3) 4.(2015全國卷Ⅱ)設(shè)函數(shù) f(x)=2x-1,x≥1,(1+log2(2-x),x<1,) 則f(-2)+f(log212
6、)=( ) A.3 B.6 C.9 D.12 5.(2015·全國卷Ⅱ)已知函數(shù)f(x)=ax3-2x的圖象過點(diǎn)(-1,4),則a=________. 6.設(shè)函數(shù)f(x)=x3+3x2+1.已知a≠0,且f(x)-f(a)=(x-b)(x-a)2,x∈R, 則實(shí)數(shù)a=________,b=________. ? 基礎(chǔ)過關(guān)參考答案: 4 1. 【解析】 (1)錯(cuò)誤.值域是集合B的子集. 【答案】B 3.【解析】因?yàn)椋?<
7、0,所以f(-2)=2-2=4(1)>0,所以f(f(-2))=f4(1)=1-4(1)=1-2(1)=2(1). 故選C. 【答案】C 4.【解析】解:由條件得f(-2)=1+log24=3,因?yàn)閘og212>1,所以f(log212)=2(log212)-1=2log26=6,故f(-2)+f(log212)=9.故選C. 【答案】C 5.【解析】由題意知點(diǎn)(-1,4)在函數(shù)f(x)=ax3-2x的圖象上,所以4=-a+2,則a=-2.故填-2. 【答案】-2. 6.【解析】因?yàn)閒(x)-f(a)=x3+3x2-a3-3a2,(x-b)(x-a)2=(x-b)(x2-2ax+
8、a2)= x3-(2a+b)x2+(a2+2ab)x-a2b, 所以-a3-3a2=-a2b,(a2+2ab=0,) 解得a=-2,b=1. 【答案】-2;1. 【能力素養(yǎng)】 探究一 求函數(shù)的定義域 函數(shù)定義域即自變量的取值范圍,是研究函數(shù)的首要考慮因素。 例1.函數(shù)f(x)=+lgx-3(x2-5x+6)的定義域?yàn)? ) A.(2,3) B.(2,4] C.(2,3)∪(3,4] D.(-1,3)∪(3,6] 【分析】確定函數(shù)的定義域首先根據(jù)所給的函數(shù)解析式特點(diǎn)(即包含的運(yùn)算)來建立不等式,求解; 【答案】
9、 C 【點(diǎn)評】求函數(shù)定義域的原則:用列表法表示的函數(shù)的定義域,是指表格中實(shí)數(shù)x的集合;用圖象法表示的函數(shù)的定義域,是指圖象在x軸上的投影所對應(yīng)的實(shí)數(shù)的集合;當(dāng)函數(shù)y=f(x)用解析法表示時(shí),函數(shù)的定義域是指使解析式有意義的實(shí)數(shù)x的集合,一般通過列不等式(組)求其解集.常見的條件有:分式的分母不等于0,對數(shù)的真數(shù)大于0,偶次根式下的被開方數(shù)大于或等于0等.若已知函數(shù)y=f(x)的定義域?yàn)閇a,b],則函數(shù)y=f(g(x))的定義域由不等式a≤g(x)≤b解出. 【變式訓(xùn)練】 1.函數(shù)f(x)=log2(x2+2x-3)的定義域是( ) A.[-3,1]
10、 B.(-3,1) C.(-∞,-3]∪[1,+∞) D.(-∞,-3)∪(1,+∞) 【解析】 要使函數(shù)有意義,只需x2+2x-3>0,即(x+3)(x-1)>0,解得x<-3或x>1.故函數(shù)的定義域?yàn)?-∞,-3)∪(1,+∞). 【答案】 D 2.若函數(shù)f(x)=的定義域?yàn)镽,則a的取值范圍為________. 【解析】因?yàn)楹瘮?shù)f(x)的定義域?yàn)镽,所以2x2+2ax - a-1≥0對x∈R恒成立,則x2+2ax-a≥0恒成立. 因此有Δ=(2a)2+4a≤0,解得-1≤a≤0.故填[-1,0]. 【答案】[-1,
11、0] 3.若函數(shù)y=f(x)的定義域是[1,2 019],則函數(shù)g(x)=x-1(f(x+1))的定義域是________. 【解析】因?yàn)閥=f(x)的定義域?yàn)閇1,2 019],所以g(x)有意義,應(yīng)滿足x-1≠0.(1≤x+1≤2 019,) 所以0≤x≤2 018,且x≠1.因此g(x)的定義域?yàn)閧x|0≤x≤2 018,且x≠1}.故填{x|0≤x≤2 018,且x≠1}. 【答案】{x|0≤x≤2 018,且x≠1}. 探究二 求函數(shù)的值域 求函數(shù)的值域是個(gè)較復(fù)雜的問題,它比求函數(shù)的定義域難度要大,而單調(diào)性法,即根據(jù)函數(shù)在定義域內(nèi)的單調(diào)性求函數(shù)的值域是較為簡單且常
12、用的方法,應(yīng)重點(diǎn)掌握. 例2:求下列函數(shù)的值域: (1)y=1+x2(1-x2); (2)y=2x+; (3)y=2x+; (4)y=x-1(x2-2x+5); (5)若x,y滿足3x2+2y2=6x,求函數(shù)z=x2+y2的值域; (6)f(x)=-. (2)(代數(shù)換元法) 令t=(t≥0),所以x=1-t2, 所以y=2(1-t2)+t=-2t2+t+2=-24(1)+8(17). 因?yàn)閠≥0,所以y≤8(17),故函數(shù)的值域?yàn)?(17). (3)(三角換元法) 令x=cost
13、(0≤t≤π),所以y=2cost+sint=sin(t+φ)5(2). 因?yàn)?≤t≤π,所以φ≤t+φ≤π+φ,所以sin(π+φ)≤sin(t+φ)≤1,故函數(shù)的值域?yàn)閇-2,]. (4)解法一:(不等式法) 因?yàn)閥=x-1(x2-2x+5)=x-1((x-1)2+4)=(x-1)+x-1(4), 又因?yàn)閤>1時(shí),x-1>0,x<1時(shí),x-1<0, 所以當(dāng)x>1時(shí),y=(x-1)+x-1(4)≥2=4,且當(dāng)x=3,等號成立; 當(dāng)x<1時(shí),y=--(x-1)(4)≤-4,且當(dāng)x=-1,等號成立. 所以函數(shù)的值域?yàn)?-∞,-4]∪[4,+∞). 解法二:(判別式法) 因?yàn)?/p>
14、y=x-1(x2-2x+5),所以x2-(y+2)x+(y+5)=0, 所以當(dāng)x=0時(shí),z有最小值0,當(dāng)x=2時(shí),z有最大值4, 故所求函數(shù)的值域?yàn)閇0,4]. (6)(圖象法) f(x)=x+5,x>4,(≤x≤4,) 作出其圖象,可知函數(shù)f(x)的值域是,+∞(9). 【點(diǎn)評】求函數(shù)值域的常用方法:①單調(diào)性法,如(5);②配方法,如(2);③分離常數(shù)法,如(1);④數(shù)形結(jié)合法;⑤換元法(包括代數(shù)換元與三角換元),如(2),(3);⑥判別式法,如(4);⑦不等式法,如(4),(5);⑧導(dǎo)數(shù)法,主要是針對在某區(qū)間內(nèi)可導(dǎo)的函數(shù);⑨圖象法,求分段函數(shù)的值域通常先作出函數(shù)的圖
15、象,然后由函數(shù)的圖象寫出函數(shù)的值域,如(6);對于二元函數(shù)的值域問題,如(5),其解法要針對具體題目的條件而定,有些題目可以將二元函數(shù)化為一元函數(shù)求值域,有些題目也可用不等式法求值域. 【變式訓(xùn)練】 1.函數(shù)y=x+1(x-3)的值域?yàn)開_______. 【解析】y=x+1(x-3)=x+1(x+1-4)=1-x+1(4),因?yàn)閤+1(4)≠0,且可取除0外的一切實(shí)數(shù),所以1-x+1(4)≠1, 且可取除1外的一切實(shí)數(shù).故函數(shù)的值域是{y|y∈R且y≠1}.故填{y|y∈R且y≠1}. 【答案】{y|y∈R且y≠1} 2.函數(shù)f(x)=x+的值域?yàn)開_______. 【解析】
16、(代數(shù)換元法)函數(shù)的定義域?yàn)?(1), 令t=(t≥0),則x=2(1-t2). 所以y=2(1-t2)+t=-2(1)(t-1)2+1(t≥0), 故當(dāng)t=1(即x=0)時(shí),y有最大值1,故函數(shù)f(x)的值域?yàn)?-∞,1].故填(-∞,1]. 【答案】(-∞,1]. 3.函數(shù)y=x2+x+1(2x2-x+2)的值域是________. 【答案】[1,5]. 探究三 求函數(shù)解析式 求函數(shù)解析式是根據(jù)條件求解函數(shù)的對應(yīng)關(guān)系,方法眾多,技巧性強(qiáng),體現(xiàn)較強(qiáng)的方程思想。 例3:(1)已知f+1(2)=lg x,則f(x)=________. (2)已知函數(shù)f(x)是二次函
17、數(shù),且f(0)=0,f(x+1)=f(x)+x+1,則f(x)=________. (3)已知函數(shù)f(x)的定義域?yàn)?0,+∞),且f(x)=2·fx(1)·-1,則f(x)=________. 【解析】 (1)令x(2)+1=t,得x=t-1(2),代入得f(t)=lg t-1(2),又x>0,所以t>1. (3)在f(x)=2fx(1)·-1中,用x(1)代替x,得fx(1)=2f(x)·x(1)-1, 由-1,(1)得f(x)=3(2)+3(1). 【答案】 (1)lgx-1(2)(x>1) (2)2(1)x2+2(1)x(x∈R) (3)3(2)+3(1)
18、【點(diǎn)評】求函數(shù)解析式的四種常見方法 1.待定系數(shù)法:若已知函數(shù)的類型(如一次函數(shù)、二次函數(shù)),可用待定系數(shù)法. 2.換元法:已知復(fù)合函數(shù)f(g(x))的解析式,可用換元法,此時(shí)要注意新元的取值范圍. 3.配湊法:由已知條件f(g(x))=F(x),可將F(x)改寫成關(guān)于g(x)的表達(dá)式,然后以x替代g(x),便得f(x)的 解析式. 4.消去法:已知f(x)與fx(1)或f(-x)之間的關(guān)系式,可根據(jù)已知條件再構(gòu)造出另外一個(gè)等式組成方程組,通過解方程組求出f(x). 【變式訓(xùn)練】 1.已知f(+1)=x+2,則f(x)=________. 【解析】(換元法)令+1=t,則x=
19、(t-1)2(t≥1),代入原式得f(t)=(t-1)2+2(t-1)=t2-1, 所以f(x)=x2-1(x≥1).故填x2-1(x≥1). 【答案】x2-1(x≥1) 2.已知f(x)是一次函數(shù),且滿足3f(x+1)-2f(x-1)=2x+17,則f(x)=________. 【解析】(待定系數(shù)法)設(shè)f(x)=ax+b(a≠0),則3f(x+1)-2f(x-1)=ax+5a+b,所以ax+5a+b=2x+17對任意實(shí)數(shù)x都成立,所以5a+b=17(a=2,) 解得b=7.(a=2,) 所以f(x)=2x+7.故填2x+7. 【答案】2x+7. 3.已知fx(1)=x2+x
20、2(1),則f(x)=________. 【解析】(配湊法)fx(1)=x2+x2(1)=x2(1)-2=x(1)-2,所以f(x)=x2-2(|x|≥2). 故填x2-2(|x|≥2). 【答案】x2-2(|x|≥2). 4.已知f(x)滿足2f(x)+fx(1)=3x,則f(x)=________. 【解析】 以x(1)代替x得2fx(1)+f(x)=x(3),由,(3)得f(x)=2x-x(1)(x≠0). 【答案】 2x-x(1)(x≠0) 探究四 分段函數(shù) 分段函數(shù)是高考的熱點(diǎn),考查方向主要是:(1).根據(jù)分段函數(shù)的解析式求函數(shù)值;(2).已知函數(shù)值(或函數(shù)值的范圍
21、)求自變量的值(或范圍)。 例4:(1)(2015·全國卷Ⅱ)設(shè)函數(shù)f(x)=2x-1, x≥1,(2-x,x<1,)則f(-2)+f(log212)=( ) A.3 B.6 C.9 D.12 【答案】 C (2)設(shè)函數(shù)f(x)=2x, x≥1.(3x-b,x<1,)若f6(5)=4,則b=( ) A.1 B.8(7) C.4(3) D.2(1) 【解析】 f6(5)=3×6(5)-b=2(5)-b,若2(5)-b<1,即b>2(3),則3×-b(5)-b=2(15)-4b=4,解得b=8(7), 不符合題意,舍去;若2(5)-b≥1,即b≤2(3)
22、,則22(5)-b=4,解得b=2(1). 【答案】 D 【點(diǎn)評】(1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當(dāng)出現(xiàn)形如f(f(x0))的求值問題時(shí),應(yīng)從內(nèi)到外依次求值.(2)求某條件下自變量的值,先假設(shè)所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應(yīng)自變量的值,切記代入檢驗(yàn),看所求的自變量的值是否滿足相應(yīng)段自變量的取值范圍. 【變式訓(xùn)練】 1.設(shè)f(x)=2x,x<0,(x,x≥0,)則f(f(-2))=( ) A.-1 B.4(1) C.2(1) D.2(3)
23、 【解析】 因?yàn)椋?<0,所以f(-2)=2-2=4(1)>0,所以f4(1)=1-4(1)=1-2(1)=2(1). 【答案】 C 2.設(shè)函數(shù)f(x)=-x2,x>0.(x2+2x+2,x≤0,)若f(f(a))=2,則a=________. 【解析】 若a>0,則f(a)=-a2<0,f(f(a))=a4-2a2+2=2,得a=. 若a≤0,則f(a)=a2+2a+2=(a+1)2+1>0,f(f(a))=-(a2+2a+2)2=2,此方程無解. 【答案】 3.(2014·全國卷Ⅰ)設(shè)函數(shù)f(x)=,x≥1,(1)則使得f(x)≤2成立的x的取值范圍是________.
24、 【答案】 (-∞,8] 4.設(shè)函數(shù)f(x)=-x2,x≥0.(x2+x,x<0,)若f(f(a))≤2,則實(shí)數(shù)a的取值范圍是________. 【解析】 f(x)的圖象如圖,由圖象知,滿足f(f(a))≤2時(shí),得f(a)≥-2,而滿足f(a)≥-2時(shí),得a≤. 【答案】 (-∞,] 【課時(shí)作業(yè)】 課標(biāo) 素養(yǎng) 數(shù)學(xué) 抽象 邏輯 推理 數(shù)學(xué) 運(yùn)算 直觀 想象 數(shù)學(xué) 建模 數(shù)據(jù) 分析 A 2,6 1,2,3,4, 2,4 3 B 7,8,9,10 5,6,7,8 5,6,7,8,13 10, 9,13 C 1
25、1,14,15, 16 10,12,14, 15,16 10,11,12,14, 15,16 一、選擇題 1.(2016·全國卷Ⅱ)下列函數(shù)中,其定義域和值域分別與函數(shù)y=10lgx的定義域和值域相同的是( ) A.y=x B.y=lgx C.y=2x D.y=x(1) 【解析】函數(shù)y=10lgx的定義域、值域均為(0,+∞),而y=x,y=2x的定義域均為R,排除A,C;y=lgx的值域?yàn)镽,排除B.故選D. 【答案】D 2.有以下判斷: ①f(x)=x(|x|)與g(
26、x)=-1,x<0(1,x≥0,)表示同一函數(shù); ②函數(shù)y=f(x)的圖象與直線x=1的交點(diǎn)最多有1個(gè); ③f(x)=x2-2x+1與g(t)=t2-2t+1是同一函數(shù); ④若f(x)=|x-1|-|x|,則f2(1)=0. 其中正確的有( ) A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè) 系均相同,所以是同一函數(shù),③正確;對于④,由于f2(1)=-1(1)-2(1)=0,所以f2(1)=f(0)=1,④錯(cuò)誤. 綜上可知,正確的判斷是②③.故選B. 【答案】B 3.設(shè)M={x|-2≤x
27、≤2},N={y|0≤y≤2},函數(shù)y=f(x)的定義域?yàn)镸,值域?yàn)镹,則y=f(x)的圖象可以是( ) 【解析】A項(xiàng)定義域?yàn)閇-2,0],D項(xiàng)值域不是[0,2],C項(xiàng)對定義域中除2以外的任一x均有兩個(gè)y與之對應(yīng),故A,C,D均不符合條件.故選B. 【答案】B 4.函數(shù)y=x-2(1)的定義域?yàn)? ) A.(-∞,2) B.(2,+∞) C.(2,3)∪(3,+∞) D.(2,4)∪(4,+∞) 【解析】 由題意知≠0,(x-2>0,)即x≠3,(x>2,)故C正確. 【答案】 C 5.設(shè)全集為R,函數(shù)f(x)=ln 1-x(1+x)的定義域?yàn)镸,則?RM=(
28、 ) A.(-1,1) B.(-∞,-1)∪(1,+∞) C.(-∞,-1]∪[1,+∞) D.[-1,1] 【答案】 C 6.已知函數(shù)f(x)=-x+log21+x(1-x)+1,則f2(1)+f2(1)的值為( ) A.2 B.-2 C.0 D.2log23(1) 【解析】 f2(1)=2(1)+log23(1),f2(1)=2(3)+log23,所以f2(1)+f2(1)=2. 【答案】 A 7.已知函數(shù)f(x)=x+1,x≤0,(2x,x>0,)若f(a)+f(1)=0,則實(shí)數(shù)a的
29、值等于( ) A.-3 B.-1 C.1 D.3 【解析】 因?yàn)閒(1)=21=2,且f(a)+f(1)=0,所以f(a)=-2.因?yàn)閤>0時(shí),f(x)>1, 所以a≤0,所以f(a)=a+1=-2,解得a=-3. 【答案】 A 8.已知函數(shù)f(x)=x2-x-1,x≤0,(3+log2(x-1),x>0,) 若f(a)=5,則a的取值集合為( ) A.{-2,3,5} B.{-2,3} C.{-2,5} D.{3,5} 【解
30、析】令3+log2(a-1)=5,得a=5,令a2-a-1=5,得a=3(舍)或a=-2,故a∈{-2,5}.或由f(-2)=(-2)2-(-2)-1=5,f(3)=3+log22=4,f(5)=3+log24=5,所以排除A,B,D.故選C. 【答案】 C 9.根據(jù)統(tǒng)計(jì),一名工人組裝第x件某產(chǎn)品所用的時(shí)間(單位:分鐘)為f(x)=,x≥A(c)(A,c為常數(shù)).已知該工人組裝第4件產(chǎn)品用時(shí)30分鐘,組裝第A件產(chǎn)品用時(shí)15分鐘,那么c和A的值分別是( ) A.75,25 B.75,16 C.60,25 D
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)管理制度:常見突發(fā)緊急事件應(yīng)急處置程序和方法
- 某物業(yè)公司冬季除雪工作應(yīng)急預(yù)案范文
- 物業(yè)管理制度:小區(qū)日常巡查工作規(guī)程
- 物業(yè)管理制度:設(shè)備設(shè)施故障應(yīng)急預(yù)案
- 某物業(yè)公司小區(qū)地下停車場管理制度
- 某物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 物業(yè)管理制度:安全防范十大應(yīng)急處理預(yù)案
- 物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 某物業(yè)公司保潔部門領(lǐng)班總結(jié)
- 某公司安全生產(chǎn)舉報(bào)獎(jiǎng)勵(lì)制度
- 物業(yè)管理:火情火災(zāi)應(yīng)急預(yù)案
- 某物業(yè)安保崗位職責(zé)
- 物業(yè)管理制度:節(jié)前工作重點(diǎn)總結(jié)
- 物業(yè)管理:某小區(qū)消防演習(xí)方案
- 某物業(yè)公司客服部工作職責(zé)