2022年高中數(shù)學(xué) 第四講《數(shù)學(xué)歸納法證明不等式》教案(1) 新人教版選修4-5
《2022年高中數(shù)學(xué) 第四講《數(shù)學(xué)歸納法證明不等式》教案(1) 新人教版選修4-5》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高中數(shù)學(xué) 第四講《數(shù)學(xué)歸納法證明不等式》教案(1) 新人教版選修4-5(12頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高中數(shù)學(xué) 第四講《數(shù)學(xué)歸納法證明不等式》教案(1) 新人教版選修4-5 數(shù)學(xué)歸納法證明不等式是高中選修的重點(diǎn)內(nèi)容之一,包含數(shù)學(xué)歸納法的定義和數(shù)學(xué)歸納法證明基本步驟,用數(shù)學(xué)歸納法證明不等式。數(shù)學(xué)歸納法是高考考查的重點(diǎn)內(nèi)容之一,在數(shù)列推理能力的考查中占有重要的地位。 本講主要復(fù)習(xí)數(shù)學(xué)歸納法的定義、數(shù)學(xué)歸納法證明基本步驟、用數(shù)學(xué)歸納法證明不等式的方法:作差比較法、作商比較法、綜合法、分析法和放縮法,以及類比與猜想、抽象與概括、從特殊到一般等數(shù)學(xué)思想方法。 在用數(shù)學(xué)歸納法證明不等式的具體過程中,要注意以下幾點(diǎn): (1)在從n=k到n=k+1的過程中,應(yīng)分析清楚不等式兩端(一般是左端)
2、項(xiàng)數(shù)的變化,也就是要認(rèn)清不等式的結(jié)構(gòu)特征; (2)瞄準(zhǔn)當(dāng)n=k+1時(shí)的遞推目標(biāo),有目的地進(jìn)行放縮、分析; (3)活用起點(diǎn)的位置; (4)有的試題需要先作等價(jià)變換。 例題精講 例1、用數(shù)學(xué)歸納法證明 分析:該命題意圖:本題主要考查數(shù)學(xué)歸納法定義,證明基本步驟 證明: 1°當(dāng)n=1時(shí),左邊=1-=,右邊==,所以等式成立。 2°假設(shè)當(dāng)n=k時(shí),等式成立, 即。 那么,當(dāng)n=k+1時(shí), 這就是說,當(dāng)n=k+1時(shí)等式也成立。 綜上所述,等式對(duì)任何自然數(shù)n都成立。 點(diǎn)評(píng): 數(shù)學(xué)歸納法是用于證明某些與自然數(shù)有關(guān)的命題的一種方法.設(shè)要證命題為P(n).(1)證明
3、當(dāng)n取第一個(gè)值n0時(shí),結(jié)論正確,即驗(yàn)證P(n0)正確;(2)假設(shè)n=k(k∈N且k≥n0)時(shí)結(jié)論正確,證明當(dāng)n=k+1時(shí),結(jié)論也正確,即由P(k)正確推出P(k+1)正確,根據(jù)(1),(2),就可以判定命題P(n)對(duì)于從n0開始的所有自然數(shù)n都正確. 要證明的等式左邊共2n項(xiàng),而右邊共n項(xiàng)。f(k)與f(k+1)相比較,左邊增加兩項(xiàng),右邊增加一項(xiàng),并且二者右邊的首項(xiàng)也不一樣,因此在證明中采取了將與合并的變形方式,這是在分析了f(k)與f(k+1)的差異和聯(lián)系之后找到的方法。 練習(xí): 1.用數(shù)學(xué)歸納法證明3k≥n3(n≥3,n∈N)第一步應(yīng)驗(yàn)證( ) A.n=1 B.n=2
4、 C.n=3 D.n=4 解析:由題意知n≥3,∴應(yīng)驗(yàn)證n=3.答案:C 2.用數(shù)學(xué)歸納法證明4+3n+2能被13整除,其中n∈N 證明: (1)當(dāng)n=1時(shí),42×1+1+31+2=91能被13整除 (2)假設(shè)當(dāng)n=k時(shí),42k+1+3k+2能被13整除,則當(dāng)n=k+1時(shí), 42(k+1)+1+3k+3=42k+1·42+3k+2·3-42k+1·3+42k+1·3 =42k+1·13+3·(42k+1+3k+2) ∵42k+1·13能被13整除,42k+1+3k+2能被13整除 ∴當(dāng)n=k+1時(shí)也成立. 由①②知,當(dāng)n∈N*時(shí),42n+1+3n+2能被13整除.
5、 例2、求證:. 分析:該命題意圖:本題主要考查應(yīng)用數(shù)學(xué)歸納法證明不等式的方法和一般步驟。 用數(shù)學(xué)歸納法證明,要完成兩個(gè)步驟,這兩個(gè)步驟是缺一不可的.但從證題的難易來分析,證明第二步是難點(diǎn)和關(guān)鍵,要充分利用歸納假設(shè),做好命題從n=k到n=k+1的轉(zhuǎn)化,這個(gè)轉(zhuǎn)化要求在變化過程中結(jié)構(gòu)不變. 證明: (1)當(dāng)n=2時(shí),右邊=,不等式成立. (2)假設(shè)當(dāng)時(shí)命題成立,即 . 則當(dāng)時(shí), 所以則當(dāng)時(shí),不等式也成立. 由(1),(2)可知,原不等式對(duì)一切均成立. 點(diǎn)評(píng):本題在由到時(shí)的推證過程中, (1)一定要注意分析清楚命題的結(jié)構(gòu)特征,即由到時(shí)不等式左端
6、項(xiàng)數(shù)的增減情況; (2)應(yīng)用了放縮技巧: 例3、已知,, 用數(shù)學(xué)歸納法證明:. 證明: (1)當(dāng)n=2時(shí),,∴命題成立. (2)假設(shè)當(dāng)時(shí)命題成立,即 . 則當(dāng)時(shí), 所以則當(dāng)時(shí),不等式也成立. 由(1),(2)可知,原不等式對(duì)一切均成立. 點(diǎn)評(píng):本題在由到時(shí)的推證過程中, (1)不等式左端增加了項(xiàng),而不是只增加了“”這一項(xiàng),否則證題思路必然受阻; (2)應(yīng)用了放縮技巧: 練習(xí): 1、證明不等式: 分析 1、數(shù)學(xué)歸納法的基本步驟: 設(shè)P(n)是關(guān)于自然數(shù)n的命題,若 1°P(n
7、0)成立(奠基) 2°假設(shè)P(k)成立(k≥n0),可以推出P(k+1)成立(歸納),則P(n)對(duì)一切大于等于n0的自然數(shù)n都成立. 2、用數(shù)學(xué)歸納法證明不等式是較困難的課題,除運(yùn)用證明不等式的幾種基本方法外,經(jīng)常使用的方法就是放縮法,針對(duì)目標(biāo),合理放縮,從而達(dá)到目標(biāo). 證明:(1)當(dāng)n=1時(shí),不等式成立. (2)假設(shè)n=k時(shí),不等式成立,即 那么, 這就是說,n=k+1時(shí),不等式也成立. 根據(jù)(1)(2)可知不等式對(duì)n∈N+都成立. 2.求證:用數(shù)學(xué)歸納法證明 . 證明: (1) 當(dāng)n=1時(shí), ,不等式成立; 當(dāng)n=2時(shí), ,不等式成立; 當(dāng)n=3時(shí)
8、, ,不等式成立. (2)假設(shè)當(dāng)時(shí)不等式成立,即 . 則當(dāng)時(shí), , ∵,∴,(*) 從而, ∴. 即當(dāng)時(shí),不等式也成立. 由(1),(2)可知,對(duì)一切都成立. 點(diǎn)評(píng): 因?yàn)樵冢?)處,當(dāng)時(shí)才成立,故起點(diǎn)只證n=1還不夠,因此我們需注意命題的遞推關(guān)系式中起點(diǎn)位置的推移. 3.求證:,其中,且. 分析:此題是xx年廣東高考數(shù)學(xué)試卷第21題的適當(dāng)變形,有兩種證法 證法一:用數(shù)學(xué)歸納法證明. (1)當(dāng)m=2時(shí),,不等式成立. (2)假設(shè)時(shí),有, 則 , ∵,∴,即. 從而, 即時(shí),亦有. 由(1)和(2)知,對(duì)都成立. 證法二:作差
9、、放縮,然后利用二項(xiàng)展開式和放縮法證明. ∴當(dāng),且時(shí),. 例4、(xx年江西省高考理科數(shù)學(xué)第21題第(1)小題,本小題滿分12分) 已知數(shù)列 證明 求數(shù)列的通項(xiàng)公式an. 分析:近年來高考對(duì)于數(shù)學(xué)歸納法的考查,加強(qiáng)了數(shù)列推理能力的考查。對(duì)數(shù)列進(jìn)行了考查,和數(shù)學(xué)歸納法一起,成為壓軸題。 解:(1)方法一 用數(shù)學(xué)歸納法證明: 1°當(dāng)n=1時(shí), ∴,命題正確. 2°假設(shè)n=k時(shí)有 則 而 又 ∴時(shí)命題正確. 由1°、2°知,對(duì)一切n∈N時(shí)有 方法二:用數(shù)學(xué)歸納法證明: 1°當(dāng)n=1時(shí),∴; 2°假設(shè)n=k時(shí)有成立,
10、 令,在[0,2]上單調(diào)遞增, 所以由假設(shè)有: 即 也即當(dāng)n=k+1時(shí) 成立, 所以對(duì)一切. (2)下面來求數(shù)列的通項(xiàng): 所以 則 又bn=-1,所以 . 點(diǎn)評(píng): 本題問給出的兩種方法均是用數(shù)學(xué)歸納法證明,所不同的是:方法一采用了作差比較法;方法二利用了函數(shù)的單調(diào)性. 本題也可先求出第(2)問,即數(shù)列的通項(xiàng)公式,然后利用函數(shù)的單調(diào)性和有界性,來證明第(1)問的不等式.但若這樣做,則無形當(dāng)中加大了第(1)問的難度,顯然不如用數(shù)學(xué)歸納法證明來得簡(jiǎn)捷. 練習(xí): 1.試證明:不論正數(shù)a、b、c是等差數(shù)列還是等比數(shù)列,當(dāng)n>1,n∈N*且a、b、c互不相等時(shí)
11、,均有:an+cn>2bn. 分析:該命題意圖:本題主要考查數(shù)學(xué)歸納法證明不等式,考查的知識(shí)包括等差數(shù)列、等比數(shù)列的性質(zhì)及數(shù)學(xué)歸納法證明不等式的一般步驟. 技巧與方法:本題中使用到結(jié)論:(ak-ck)(a-c)>0恒成立(a、b、c為正數(shù)),從而ak+1+ck+1>ak·c+ck·a. 證明:(1)設(shè)a、b、c為等比數(shù)列,a=,c=bq(q>0且q≠1) ∴an+cn=+bnqn=bn(+qn)>2bn (2)設(shè)a、b、c為等差數(shù)列,則2b=a+c猜想>()n(n≥2且n∈N*) 下面用數(shù)學(xué)歸納法證明: ①當(dāng)n=2時(shí),由2(a2+c2)>(a+c)2,∴ ②設(shè)n=k時(shí)成立
12、,即 則當(dāng)n=k+1時(shí), (ak+1+ck+1+ak+1+ck+1) >(ak+1+ck+1+ak·c+ck·a)=(ak+ck)(a+c) >()k·()=()k+1 根據(jù)①、②可知不等式對(duì)n>1,n∈N*都成立. 二.基礎(chǔ)訓(xùn)練 一、選擇題 1.已知f(n)=(2n+7)·3n+9,存在自然數(shù)m,使得對(duì)任意n∈N,都能使m整除f(n),則最大的m的值為( ) A.30 B.26 C.36 D.6 解析:∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36 ∴f(1),f(2),f(3)能被36整除,猜想f(n)能被3
13、6整除. 證明:n=1,2時(shí),由上得證,設(shè)n=k(k≥2)時(shí), f(k)=(2k+7)·3k+9能被36整除,則n=k+1時(shí), f(k+1)-f(k)=(2k+9)·3k+1-(2k+7)·3k =(6k+27)·3k-(2k+7)·3k =(4k+20)·3k=36(k+5)·3k-2(k≥2) f(k+1)能被36整除 ∵f(1)不能被大于36的數(shù)整除,∴所求最大的m值等于36. 答案:C 二、填空題 2.觀察下列式子:…則可歸納出_________. 解析: (n∈N*) (n∈N*) 3.已知a1=,an+1=,則a2,a3,a4,a5的值分別為
14、_________,由此猜想an=_________. 、、、 三、解答題 4.若n為大于1的自然數(shù),求證:. 證明:(1)當(dāng)n=2時(shí), (2)假設(shè)當(dāng)n=k時(shí)成立,即 所以:對(duì)于n∈N*,且n>1時(shí),有 5.已知數(shù)列{bn}是等差數(shù)列,b1=1,b1+b2+…+b10=145. (1)求數(shù)列{bn}的通項(xiàng)公式bn; (2)設(shè)數(shù)列{an}的通項(xiàng)an=loga(1+)(其中a>0且a≠1)記Sn是數(shù)列{an}的前n項(xiàng)和,試比較Sn與logabn+1的大小,并證明你的結(jié)論. (1)解:設(shè)數(shù)列{bn}的公差為d,由題意得,∴bn=3n-2 (2)證明:由bn=3n
15、-2知 Sn=loga(1+1)+loga(1+)+…+loga(1+) =loga[(1+1)(1+)…(1+ )] 而logabn+1=loga,于是,比較Sn與logabn+1的大小比較(1+1)(1+)…(1+)與的大小. 取n=1,有(1+1)= 取n=2,有(1+1)(1+ 推測(cè):(1+1)(1+)…(1+)> (*) ①當(dāng)n=1時(shí),已驗(yàn)證(*)式成立. ②假設(shè)n=k(k≥1)時(shí)(*)式成立,即(1+1)(1+)…(1+)> 則當(dāng)n=k+1時(shí), ,即當(dāng)n=k+1時(shí),(*)式成立 由①②知,(*)式對(duì)任意正整數(shù)n都成立. 于是,當(dāng)a>1時(shí),Sn>lo
16、gabn+1,當(dāng) 0<a<1時(shí),Sn<logabn+1 6.設(shè)實(shí)數(shù)q滿足|q|<1,數(shù)列{an}滿足:a1=2,a2≠0,an·an+1=-qn,求an表達(dá)式,又如果S2n<3,求q的取值范圍. 解:∵a1·a2=-q,a1=2,a2≠0, ∴q≠0,a2=-, ∵an·an+1=-qn,an+1·an+2=-qn+1 兩式相除,得,即an+2=q·an 于是,a1=2,a3=2·q,a5=2·qn…猜想:a2n+1=-qn(n=1,2,3,…) 綜合①②,猜想通項(xiàng)公式為an= 下證:(1)當(dāng)n=1,2時(shí)猜想成立 (2)設(shè)n=2k-1時(shí),a2k-1=2·qk-1則n=2
17、k+1時(shí),由于a2k+1=q·a2k-1 ∴a2k+1=2·qk即n=2k-1成立. 可推知n=2k+1也成立. 設(shè)n=2k時(shí),a2k=-qk,則n=2k+2時(shí),由于a2k+2=q·a2k, 所以a2k+2=-qk+1,這說明n=2k成立,可推知n=2k+2也成立. 綜上所述,對(duì)一切自然數(shù)n,猜想都成立. 這樣所求通項(xiàng)公式為an= S2n=(a1+a3…+a2n-1)+(a2+a4+…+a2n) =2(1+q+q2+…+qn-1)- (q+q2+…+qn) 由于|q|<1,∴= 依題意知<3,并注意1-q>0,|q|<1解得-1<q<0或0<q< 三.鞏
18、固練習(xí)
1. (06 年湖南卷. 理 .19本小題滿分14分)
已知函數(shù),數(shù)列{}滿足:
證明:(ⅰ);(ⅱ).
證明: (I).先用數(shù)學(xué)歸納法證明,n=1,2,3,…
(i).當(dāng)n=1時(shí),由已知顯然結(jié)論成立.
(ii).假設(shè)當(dāng)n=k時(shí)結(jié)論成立,即.因?yàn)? 19、上是增函數(shù). 又g (x)在[0,1]上連續(xù),且g (0)=0,
所以當(dāng)時(shí),g (x)>0成立.于是.
故.
點(diǎn)評(píng):不等式的問題常與函數(shù)、三角、數(shù)列、導(dǎo)數(shù)、幾何等數(shù)學(xué)分支交匯,綜合考查運(yùn)用不等式知識(shí)解決
問題的能力,在交匯中尤其以各分支中蘊(yùn)藏的不等式結(jié)論的證明為重點(diǎn). 需要靈活運(yùn)用各分支的數(shù)學(xué)知識(shí).
2. ( 05 年遼寧卷.19本小題滿分12分)
已知函數(shù)設(shè)數(shù)列}滿足,數(shù)列}滿足
(Ⅰ)用數(shù)學(xué)歸納法證明;
(Ⅱ)證明
分析:本小題主要考查數(shù)列、等比數(shù)列、不等式等基本知識(shí),考查運(yùn)用數(shù)學(xué)歸納法解決有關(guān)問題的能力
(Ⅰ)證明:當(dāng) 因?yàn)閍1= 20、1,
所以
下面用數(shù)學(xué)歸納法證明不等式
(1)當(dāng)n=1時(shí),b1=,不等式成立,
(2)假設(shè)當(dāng)n=k時(shí),不等式成立,即
那么
所以,當(dāng)n=k+1時(shí),不等也成立。
根據(jù)(1)和(2),可知不等式對(duì)任意n∈N*都成立。
(Ⅱ)證明:由(Ⅰ)知,
所以
故對(duì)任意)
3.(05 年湖北卷.理22.本小題滿分14分)
已知不等式為大于2的整數(shù),表示不超過的最大整數(shù). 設(shè)數(shù)列的各項(xiàng)為正,且滿足
(Ⅰ)證明
(Ⅱ)猜測(cè)數(shù)列是否有極限?如果有,寫出極限的值(不必證明);
分析:本小題主要考查數(shù)列、極限及不等式的綜合應(yīng)用以及歸納遞推的思想.
(Ⅰ)證法1:∵當(dāng)
即
于是有
所有不等式兩邊相加可得
由已知不等式知,當(dāng)n≥3時(shí)有,
∵
證法2:設(shè),首先利用數(shù)學(xué)歸納法證不等式
(i)當(dāng)n=3時(shí), 由
知不等式成立.
(ii)假設(shè)當(dāng)n=k(k≥3)時(shí),不等式成立,即
則
即當(dāng)n=k+1時(shí),不等式也成立.
由(i)、(ii)知,
又由已知不等式得
(Ⅱ)有極限,且
(Ⅲ)∵
則有
故取N=1024,可使當(dāng)n>N時(shí),都有
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識(shí)競(jìng)賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫(kù)試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫(kù)試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫(kù)試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識(shí)測(cè)試題庫(kù)及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測(cè)工種技術(shù)比武題庫(kù)含解析
- 1 礦山應(yīng)急救援安全知識(shí)競(jìng)賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案