2022年高三數(shù)學(xué)上學(xué)期第一次月考試題 文(含解析)新人教A版

上傳人:xt****7 文檔編號:105246209 上傳時間:2022-06-11 格式:DOC 頁數(shù):12 大?。?38.02KB
收藏 版權(quán)申訴 舉報 下載
2022年高三數(shù)學(xué)上學(xué)期第一次月考試題 文(含解析)新人教A版_第1頁
第1頁 / 共12頁
2022年高三數(shù)學(xué)上學(xué)期第一次月考試題 文(含解析)新人教A版_第2頁
第2頁 / 共12頁
2022年高三數(shù)學(xué)上學(xué)期第一次月考試題 文(含解析)新人教A版_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高三數(shù)學(xué)上學(xué)期第一次月考試題 文(含解析)新人教A版》由會員分享,可在線閱讀,更多相關(guān)《2022年高三數(shù)學(xué)上學(xué)期第一次月考試題 文(含解析)新人教A版(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高三數(shù)學(xué)上學(xué)期第一次月考試題 文(含解析)新人教A版   一、選擇題(本大題共10小題,每小題5分,共50分) 1.若集合A={x|y=2x},集合,則A∩B=( ?。?   A.(0,+∞) B. (1,+∞) C. [0,+∞) D. (﹣∞,+∞) 考點: 函數(shù)的定義域及其求法;交集及其運算. 專題: 計算題;函數(shù)的性質(zhì)及應(yīng)用. 分析: 求出集合A中函數(shù)的定義域確定出A,求出集合B中函數(shù)的定義域確定出B,求出A與B的交集即可. 解答: 解:集合A中的函數(shù)y=2x,x∈R,即A=R, 集合B中的函數(shù)y=,x≥0,即B=[0,+∞), 則A∩B=[0,+∞).

2、故選C 點評: 此題屬于以函數(shù)的定義域為平臺,考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.   2.設(shè)a∈R,則“a=1”是“直線y=a2x+1與直線y=x﹣1平行”的( ?。?   A.充分不必要條件 B. 必要不充分條件   C.充要條件 D. 既不充分也不必要條件 考點: 必要條件、充分條件與充要條件的判斷. 專題: 直線與圓. 分析: 結(jié)合直線平行的條件,利用充分條件和必要條件的定義進行判斷. 解答: 解:若直線y=a2x+1與直線y=x﹣1平行,則a2=1,解得a=1或a=﹣1. 所以“a=1”是“直線y=a2x+1與直線y=x﹣1平行”的充分不必要條件.

3、 故選A. 點評: 本題主要考查充分條件和必要條件的判斷,要求熟練掌握直線平行的條件.   3.已知復(fù)數(shù)z滿足(3﹣4i)z=25,則z=( ?。?   A.﹣3﹣4i B. ﹣3+4i C. 3﹣4i D. 3+4i 考點: 復(fù)數(shù)相等的充要條件. 專題: 數(shù)系的擴充和復(fù)數(shù). 分析: 由題意利用兩個復(fù)數(shù)代數(shù)形式的乘除法,虛數(shù)單位i的冪運算性質(zhì),計算求得結(jié)果. 解答: 解:∵滿足(3﹣4i)z=25,則z===3+4i, 故選:D. 點評: 本題主要考查兩個復(fù)數(shù)代數(shù)形式的乘除法,虛數(shù)單位i的冪運算性質(zhì),屬于基礎(chǔ)題.   4.下列命題正確的是( ?。?   A. 若兩條直線

4、和同一個平面所成的角相等,則這兩條直線平行   B. 若一個平面內(nèi)有三個點到另一個平面的距離相等,則這兩個平面平行   C. 若一條直線平行于兩個相交平面,則這條直線與這兩個平面的交線平行   D. 若兩個平面都垂直于第三個平面,則這兩個平面平行 考點: 命題的真假判斷與應(yīng)用;空間中直線與平面之間的位置關(guān)系. 專題: 證明題. 分析: 利用直線與平面所成的角的定義,可排除A;利用面面平行的位置關(guān)系與點到平面的距離關(guān)系可排除B;利用線面平行的判定定理和性質(zhì)定理可判斷C正確;利用面面垂直的性質(zhì)可排除D 解答: 解:A,若兩條直線和同一個平面所成的角相等,則這兩條直線平行、相交或異面;

5、排除A; B,若一個平面內(nèi)有三個點到另一個平面的距離相等,則這兩個平面平行或相交,排除B; C,設(shè)平面α∩β=a,l∥α,l∥β,由線面平行的性質(zhì)定理,在平面α內(nèi)存在直線b∥l,在平面β內(nèi)存在直線c∥l,所以由平行公理知b∥c,從而由線面平行的判定定理可證明b∥β,進而由線面平行的性質(zhì)定理證明得b∥a,從而l∥a;故C正確; D,若兩個平面都垂直于第三個平面,則這兩個平面平行或相交,排除D; 故選 C 點評: 本題主要考查了空間線面平行和垂直的位置關(guān)系,線面平行的判定和性質(zhì),面面垂直的性質(zhì)和判定,空間想象能力,屬基礎(chǔ)題   5.設(shè)等比數(shù)列{an}的前n項和為Sn,若8a2+a5=

6、0,則下列式子中數(shù)值不能確定的是( ?。?   A. B. C. D. 考點: 等比數(shù)列的性質(zhì). 專題: 計算題. 分析: 根據(jù)已知的等式變形,利用等比數(shù)列的性質(zhì)求出公比q的值,然后分別根據(jù)等比數(shù)列的通項公式及前n項和公式,即可找出四個選項中數(shù)值不能確定的選項. 解答: 解:由8a2+a5=0,得到=q3=﹣8,故選項A正確; 解得:q=﹣2,則=q=﹣2,故選項C正確; 則==,故選項B正確; 而==,所以數(shù)值不能確定的是選項D. 故選D 點評: 此題考查學(xué)生掌握等比數(shù)列的性質(zhì),靈活運用等比數(shù)列的通項公式及前n項和公式化簡求值,是一道基礎(chǔ)題.   6.若P(2,

7、﹣1)為圓(x﹣1)2+y2=25的弦AB的中點,則直線AB的方程是(  )   A. x﹣y﹣3=0 B. 2x+y﹣3=0 C. x+y﹣1=0 D. 2x﹣y﹣5=0 考點: 直線和圓的方程的應(yīng)用;直線與圓相交的性質(zhì). 專題: 計算題. 分析: 由圓心為O(1,0),由點P為弦的中點,則該點與圓心的連線垂直于直線AB求解其斜率,再由點斜式求得其方程. 解答: 解:已知圓心為O(1,0) 根據(jù)題意:Kop= kABkOP=﹣1 kAB=1,又直線AB過點P(2,﹣1), ∴直線AB的方程是x﹣y﹣3=0 故選A 點評: 本題主要考查直線與圓的位置關(guān)系及其方程的應(yīng)用,主

8、要涉及了弦的中點與圓心的連線與弦所在的直線垂直.   7.已知焦點在y軸上的橢圓+=1的長軸長為8,則m等于( ?。?   A. 4 B. 6 C. 16 D. 18 考點: 橢圓的簡單性質(zhì). 專題: 圓錐曲線的定義、性質(zhì)與方程. 分析: 利用橢圓的標準方程及其性質(zhì)即可得出. 解答: 解:∵焦點在y軸上的橢圓+=1的長軸長為8, ∴2=8,解得m=16. 故選:C. 點評: 本題考查了橢圓的標準方程及其性質(zhì),屬于基礎(chǔ)題.   8.200輛汽車通過某一段公路時的時速的頻率分布直方圖如圖所示,時速在[50,60)的汽車大約有( ?。?   A. 30輛 B. 40輛 C.

9、 60輛 D. 80輛 考點: 頻率分布直方圖. 專題: 計算題. 分析: 首先要做出事件發(fā)生的頻率,在頻率分步直方圖中小長方形的面積為頻率,用長乘以寬,得到頻率,用頻率乘以總體個數(shù),得到這個范圍中的個體數(shù). 解答: 解:在頻率分步直方圖中小長方形的面積為頻率, 在[50,60)的頻率為0.03×10=0.3, ∴大約有200×0.3=60輛. 故選C 點評: 本題考查頻率分步直方圖,考查頻率分步直方圖中小長方形的面積等于頻率,本題考查頻率,頻數(shù)和樣本容量之間的關(guān)系,這三個量可以做到知二求一.   9.函數(shù):①y=x?sinx②y=x?cosx③y=x?|cosx|④y=x

10、?2x的圖象(部)如圖所示,但順序被打亂,則按照從左到右將圖象對應(yīng)的函數(shù)序號安排正確的一組是( ?。?   A.④①②③ B. ①④③② C. ①④②③ D. ③④②① 考點: 正弦函數(shù)的圖象;余弦函數(shù)的圖象. 專題: 數(shù)形結(jié)合. 分析: 依據(jù)函數(shù)的性質(zhì)與圖象的圖象對應(yīng)來確定函數(shù)與圖象之間的對應(yīng)關(guān)系,對函數(shù)的解析式研究發(fā)現(xiàn),四個函數(shù)中有一個是偶函數(shù),有兩個是奇函數(shù),還有一個是指數(shù)型遞增較快的函數(shù),由這些特征接合圖象上的某些特殊點判斷即可. 解答: 解:研究發(fā)現(xiàn)①是一個偶函數(shù),其圖象關(guān)于y軸對稱,故它對應(yīng)第一個圖象 ②③都是奇函數(shù),但②在y軸的右側(cè)圖象在x軸上方與下方都存在,而③在

11、y軸右側(cè)圖象只存在于x軸上方,故②對應(yīng)第三個圖象,③對應(yīng)第四個圖象,④與第二個圖象對應(yīng),易判斷. 故按照從左到右與圖象對應(yīng)的函數(shù)序號①④②③ 故選C. 點評: 本題考點是正弦函數(shù)的圖象,考查了函數(shù)圖象及函數(shù)圖象變化的特點,解決此類問題有借助兩個方面的知識進行研究,一是函數(shù)的性質(zhì),二是函數(shù)值在某些點的符號即圖象上某些特殊點在坐標系中的確切位置. 10.已知函數(shù)f(x)是定義在R上的奇函數(shù),當x<0時,f(x)=ex(x+1),給出下列命題: ①當x>0時,f(x)=ex(1﹣x); ②f(x)>0的解集為(﹣1,0)∪(1,+∞); ③函數(shù)f(x)有2個零點; ④?x1,x2∈R

12、,都有|f(x1)﹣f(x2)|<2, 其中正確命題的個數(shù)是( ?。?   A. 1 B. 2 C. 3 D. 4 考點: 命題的真假判斷與應(yīng)用;奇偶性與單調(diào)性的綜合. 專題: 計算題. 分析: 逐個驗證:①為函數(shù)對稱區(qū)間的解析式的求解;②為不等式的求解,分段來解,然后去并集即可;③涉及函數(shù)的零點,分段來解即可,注意原點;④實際上是求函數(shù)的取值范圍,綜合利用導(dǎo)數(shù)和極值以及特殊點,畫出函數(shù)的圖象可得范圍. 解答: 解:設(shè)x>0,則﹣x<0,故f(﹣x)=e﹣x(﹣x+1),又f(x)是定義在R上的奇函數(shù),故f(﹣x)=﹣f(x)=e﹣x(﹣x+1),所以f(x)=e﹣x(x﹣1),故①

13、錯誤; 因為當x<0時,由f(x)=ex(x+1)>0,解得﹣1<x<0,當x>0時,由f(x)=e﹣x(x﹣1)>0,解得x>1,故f(x)>0的解集為(﹣1,0)∪(1,+∞),故②正確; 令ex(x+1)=0可解得x=﹣1,當e﹣x(x﹣1)=0時,可解得x=1,又函數(shù)f(x)是定義在R上的奇函數(shù),故有f(0)=0,故函數(shù)的零點由3個,故③錯誤; ④?x1,x2∈R,都有|f(x1)﹣f(x2)|<2,正確,因為當x>0時f(x)=e﹣x(x﹣1),圖象過點(1,0),又f′(x)=e﹣x(2﹣x), 可知當0<x<2時,f′(x)>0,當x>2時,,f′(x)<0,故函數(shù)在x=

14、2處取到極大值f(2)=,且當x趨向于0時,函數(shù)值趨向于﹣1, 當當x趨向于+∞時,函數(shù)值趨向于0, 由奇函數(shù)的圖象關(guān)于原點對稱可作出函數(shù)f(x)的圖象, 可得函數(shù)﹣1<f(x)<1,故有|f(x1)﹣f(x2)|<2成立. 綜上可得正確的命題為②④, 故選B 點評: 本題考查命題真假的判斷,涉及函數(shù)性質(zhì)的綜合應(yīng)用,屬中檔題.   二、填空題(每題5分,共25分) 11.已知x,y滿足,則z=2x+y的最大值為 3?。? 考點: 簡單線性規(guī)劃. 專題: 計算題. 分析: 先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,z=2x+y表示直線在y軸上的截距,只需求出可

15、行域直線在y軸上的截距最大值即可. 解答: 解:,在坐標系中畫出圖象, 三條線的交點分別是A(﹣1,﹣1),B(,), C(2,﹣1), 在△ABC中滿足z=2x+y的最大值是點C,代入得最大值等于3. 故答案為:3. 點評: 本題只是直接考查線性規(guī)劃問題,是一道較為簡單的試題.近年來高考線性規(guī)劃問題高考數(shù)學(xué)考試的熱點,數(shù)形結(jié)合是數(shù)學(xué)思想的重要手段之一,體現(xiàn)了數(shù)形結(jié)合思想的應(yīng)用.   12.如果執(zhí)行如圖程序框圖(判斷條件k≤20?),那么輸出的S= 420?。? 考點: 循環(huán)結(jié)構(gòu). 專題: 算法和程序框圖. 分析: 執(zhí)行程序框圖,分析程序框圖的功能和意義,計算并

16、輸出S=2×(1+2+…+20)的值,不難計算為420. 解答: 解:執(zhí)行程序框圖,有 k=1 S=0 滿足條件k≤20,第1次執(zhí)行循環(huán)體,有S=2,k=2 滿足條件k≤20,第2次執(zhí)行循環(huán)體,有S=2+4,k=3 滿足條件k≤20,第3次執(zhí)行循環(huán)體,有S=2+4+6,k=4 … 滿足條件k≤20,第19次執(zhí)行循環(huán)體,有S=2+4+..+38,k=20 滿足條件k≤20,第20次執(zhí)行循環(huán)體,有S=2+4+…+40,k=21 不滿足條件k≤20,退出執(zhí)行循環(huán)體,輸出S的值 根據(jù)程序框圖的意義和功能,得S=2×(1+2+…+20)=420 故答案為:420. 點評: 本題

17、主要考察程序框圖和算法,屬于基礎(chǔ)題.   13.已知是夾角為120°的單位向量,向量=t+(1﹣t),若⊥,則實數(shù)t= ?。? 考點: 數(shù)量積判斷兩個平面向量的垂直關(guān)系. 專題: 平面向量及應(yīng)用. 分析: 由已知得=[t+(1﹣t)]=0,由此能求出實數(shù)t. 解答: 解:∵是夾角為120°的單位向量, 向量=t+(1﹣t),⊥, ∴=[t+(1﹣t)]=t+(1﹣t)=t?cos120°+1﹣t=1﹣, 解得t=.故答案為:. 點評: 本題考查實數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意向量垂直的性質(zhì)的合理運用.   14.一個幾何體的三視圖如圖,則該幾何體的體積為

18、 6π?。? 考點: 由三視圖求面積、體積. 專題: 計算題;空間位置關(guān)系與距離. 分析: 三視圖中長對正,高對齊,寬相等;由三視圖想象出直觀圖,一般需從俯視圖構(gòu)建直觀圖,該幾何體為半圓柱. 解答: 解:由三視圖可知,該幾何體為半圓柱, 其底面半徑為2,高為3; 則其體積為:×π×22×3=6π. 故答案為:6π. 點評: 三視圖中長對正,高對齊,寬相等;由三視圖想象出直觀圖,一般需從俯視圖構(gòu)建直觀圖,本題考查了學(xué)生的空間想象力,識圖能力及計算能力.   15.已知函數(shù)f(x)是定義在R上的奇函數(shù),其中f(1)=0,且當x>0時,有>0,則不等式f(x)>0的解集是 

19、(﹣∞,﹣1)∪(1,+∞)?。? 考點: 函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系. 專題: 導(dǎo)數(shù)的概念及應(yīng)用. 分析: 先根據(jù)=>0,判斷函數(shù)的單調(diào)性,進而分別看x>1和0<x<1時f(x)與0的關(guān)系.再根據(jù)函數(shù)的奇偶性判斷﹣1<x<0和x<﹣1時f(x)與0的關(guān)系,最后去x的并集即可得到答案. 解答: 解:=>0, 即x>0時,是增函數(shù) 當x>1時>f(1)=0,f(x)>0; 0<x<1時,<f(1)=0,f(x)<0. 又f(x)是奇函數(shù), 所以﹣1<x<0時,f(x)=﹣f(﹣x)>0; x<﹣1時f(x)=﹣f(﹣x)<0. 則不等式f(x)>0的解集是(﹣1,0)∪(1

20、,+∞) 故答案為:(﹣1,0)∪(1,+∞). 點評: 本題主要考查了函數(shù)單調(diào)性與奇偶性的應(yīng)用.在判斷函數(shù)的單調(diào)性時,??衫脤?dǎo)函數(shù)來判斷.   三、解答題(共75分) 16.(12分)△ABC中角A,B,C的對邊分別為a,b,c,且b2+c2﹣a2+bc=0, (1)求角A的大??; (2)若,求△ABC面積S△ABC的最大值. 考點: 余弦定理;三角形的面積公式. 專題: 計算題;解三角形. 分析: (1)根據(jù)題中等式,利用余弦定理算出cosA=﹣,結(jié)合A為三角形的內(nèi)角,可得A=; (2)利用基本不等式,算出bc≤1,當且僅當b=c=1時等號成立.由此結(jié)合正弦定理

21、的面積公式,即可算出△ABC面積S△ABC的最大值. 解答: 解:(1)∵△ABC中,b2+c2﹣a2+bc=0,∴b2+c2﹣a2=﹣bc 因此cosA===﹣ ∵A為三角形的內(nèi)角,∴A=; (2)∵b2+c2﹣a2+bc=0, ∴a2=b2+c2+bc=3,得b2+c2=﹣bc+3≥2bc 解之得bc≤1,當且僅當b=c=1時等號成立 ∵△ABC面積S△ABC=bcsinA=bc ∴當且僅當b=c=1時,△ABC面積S△ABC的最大值為. 點評: 本題給出三角形的邊之間的平方關(guān)系,求角的大小并依此求三角形面積的最大值.著重考查了正余弦定理解三角形、運用基本不等式求最值等知

22、識,屬于中檔題.   17.(12分)已知數(shù)列{an}的前n項和Sn=n2+2n. (Ⅰ)求數(shù)列{an}的通項公式; (Ⅱ)若等比數(shù)列{bn}滿足b2=S1,b4=a2+a3,求數(shù)列{bn}的前n項和Tn. 考點: 數(shù)列的應(yīng)用. 專題: 計算題. 分析: (I)由題意知a1=3,an=Sn﹣Sn﹣1=2n,符合. (II)設(shè)等比數(shù)列的公比為q,則,由此能夠求出數(shù)列{bn}的前n項和Tn. 解答: 解:(I)a1=S1=3 當n≥2時,an=Sn﹣Sn﹣1=n2+2n﹣[(n﹣1)2+2(n﹣1)]=2n+ 符合 (II)設(shè)等比數(shù)列的公比為q, 則 解得 所以

23、 即. 點評: 本題考查數(shù)列性質(zhì)的綜合運用,具有一定的難度,解題時要仔細挖掘題設(shè)中的隱含條件,   18.(12分)如圖五面體中,四邊形CBB1C1為矩形,B1C1⊥平面ABB1N,四邊形ABB1N為梯形, 且AB⊥BB1,BC=AB=AN==4. (1)求證:BN⊥平面C1B1N; (2)求此五面體的體積. 考點: 棱柱、棱錐、棱臺的體積;直線與平面垂直的判定. 專題: 空間位置關(guān)系與距離. 分析: (1)利用直線與平面垂直的性質(zhì)定理證明B1C1⊥BN,然后利用勾股定理證明BN⊥B1N,通過B1N∩B1C1=B1,利用直線與平面垂直的判定定理證明:BN⊥平面

24、C1B1N; (2)連接CN,說明NM⊥平面B1C1CB,然后五面體的體積分別求解即可. 解答: 解:(1)證明:連4,過N作NM⊥BB1,垂足為M, ∵B1C1⊥平面ABB1N,BN?平面ABB1N, ∴B1C1⊥BN,…(2分) 又,BC=4,AB=4,BM=AN=4,BA⊥AN, ∴,=, ∵, ∴BN⊥B1N,…(4分) ∵B1C1?平面B1C1N,B1N?平面B1C1N,B1N∩B1C1=B1 ∴BN⊥平面C1B1N…(6分) (2)連接CN,,…(8分) 又B1C1⊥平面ABB1N,所以平面CBB1C1⊥平面ABB1N,且平面CBB1C1∩ABB

25、1N=BB1,NM⊥BB1, NM?平面B1C1CB, ∴NM⊥平面B1C1CB,…(9分) …(11分) 此幾何體的體積…(12分) 點評: 本題考查直線與平面垂直的判定定理以及性質(zhì)定理的應(yīng)用,幾何體的體積的求法,考查轉(zhuǎn)化思想以及空間想象能力.   19.(13分) 某電視臺組織部分記者,用“10分制”隨機調(diào)查某社區(qū)居民的幸福指數(shù),現(xiàn)從調(diào)查人群中隨機抽取16名,如圖所示的莖葉圖記錄了他們的幸福指數(shù)的得分(以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉): (1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù); (2)若幸福指數(shù)不低于9.5分,則稱該人的幸福指數(shù)為“極幸?!?,求從這16人中

26、隨機選取2人,至多有1人是“極幸?!钡母怕剩? 考點: 古典概型及其概率計算公式;莖葉圖. 專題: 概率與統(tǒng)計. 分析: (1)根據(jù)眾數(shù)是出現(xiàn)次數(shù)最多的數(shù)求出眾數(shù);根據(jù)中位數(shù)是從小到大排列位于中間位置的兩數(shù)的平均數(shù)求中位數(shù); (2)由莖葉圖求出幸福度不低于9.5分的人數(shù),計算按分層抽樣的方法從幸福度不低于9.5分的應(yīng)抽取是人數(shù),再分別求出從16人中隨機抽取2人的抽法種數(shù)和2人中至少有1人“很幸?!钡某榉ǚN數(shù),利用古典概型概率公式計算. 解答: 解:(1)由莖葉圖知:眾數(shù)為8.6; 中位數(shù)為=8.75; (2)設(shè)A表示“2個人中至多有一個人‘很幸?!边@一事件 由莖葉圖知:

27、幸福度不低于9.5分的有4人, ∴從16人中隨機抽取2人,所有可能的結(jié)果有=120個, 其中事件A中的可能性有=114個, ∴概率P(A)==. 點評: 本題考查了由莖葉圖求數(shù)據(jù)的眾數(shù)、中位數(shù),考查了古典概型的概率計算及組合數(shù)公式的應(yīng)用,是概率統(tǒng)計的基本題型,讀懂莖葉圖是解題的關(guān)鍵.   20.(13分)已知函數(shù)f(x)=,(其中常數(shù)a>0) (Ⅰ)當a=1時,求曲線在(0,f(0))處的切線方程; (Ⅱ)若存在實數(shù)x∈(a,2]使得不等式f(x)≤e2成立,求a的取值范圍. 考點: 利用導(dǎo)數(shù)研究曲線上某點切線方程;函數(shù)恒成立問題. 專題: 導(dǎo)數(shù)的綜合應(yīng)用. 分析:

28、(Ⅰ)把a=1代入函數(shù)解析式,求出f(0),求出原函數(shù)的導(dǎo)函數(shù),再求出f′(1),則曲線在(0,f(0))處的切線方程可求; (Ⅱ)求出原函數(shù)的導(dǎo)函數(shù),得到導(dǎo)函數(shù)的零點,由導(dǎo)函數(shù)的零點對定義域分段,由導(dǎo)函數(shù)在各區(qū)間段內(nèi)的符號得到原函數(shù)的單調(diào)性,把存在實數(shù)x∈(a,2]使不等式 f(x)≤e2成立轉(zhuǎn)化為在(a,2]上成立,然后由a+1≤2和a+1>2分類求出f(x)的最小值,由最小值小于等于e2求解a的取值范圍. 解答: 解:(Ⅰ)當a=1時,,, ∴f(0)=﹣1,f′(0)=﹣2, ∴曲線在(0,f(0))處的切線方程為:2x+y+1=0; (Ⅱ)函數(shù)的定義域{x|x≠a}.

29、由f(x)=,得, 令f'(x)=0,得x=a+1, 當x∈(﹣∞,a),(a,a+1)時,f′(x)0. ∴f(x)在(﹣∞,a),(a,a+1)遞減,在(a+1,+∞)遞增. 若存在實數(shù)x∈(a,2]使不等式f(x)≤e2成立, 只需在(a,2]上成立, ①若a+1≤2,即0<a≤1時,, ∴a+1≤2,即a≤1, ∴0<a≤1; ②若a+1>2,即1<a<2,, 解得a≤1, 又1<a<2, ∴a∈?. 綜上,a的取值范圍是(0,1]. 點評: 本題考查利用導(dǎo)數(shù)研究曲線上某點處的切線方程,考查了利用導(dǎo)數(shù)研究函數(shù)的最值,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.  

30、 21.(13分)已知橢圓C:=1(a>b>0),離心率為,兩焦點分別為F1、F2,過F1的直線交橢圓C于M,N兩點,且△F2MN的周長為8. (1)求橢圓C的方程; (2)過點P(m,0)作圓x2+y2=1的切線l交橢圓C于A,B兩點,求弦長|AB|的最大值. 考點: 直線與圓錐曲線的關(guān)系;橢圓的標準方程. 專題: 圓錐曲線的定義、性質(zhì)與方程;圓錐曲線中的最值與范圍問題. 分析: (1)利用已知條件求出橢圓方程中的幾何量,即可求橢圓C的方程; (2)利用直線的斜率存在與不存在,分別與橢圓方程聯(lián)立,利用韋達定理,以及弦長公式表示弦長|AB|通過基本不等式求解弦長的最大值. 解

31、答: 解:(1)由題得:,4a=8,所以a=2,. …(3分) 又b2=a2﹣c2,所以b=1即橢圓C的方程為.…(4分) (2)由題意知,|m|≥1. 當m=1時,切線l的方程x=1,點A、B的坐標分別為, 此時; 當m=﹣1時,同理可得… 當|m|>1時,設(shè)切線l的方程為y=k(x﹣m),(k≠0) 由 設(shè)A、B兩點的坐標分別為(x1,y1),(x2,y2), 則△=64k4m2﹣16(1+4k2)(4k2m2﹣4)=48k2>0 又由l與圓.得 所以==…(9分) 因為|m|≥1所以, 且當時,|AB|=2, 由于當m=±1時,,所以|AB|的最大值為2.…(12分) 點評: 本題考查橢圓的方程的求法,直線與橢圓的位置關(guān)系,弦長公式的應(yīng)用,考查分析問題解決問題的能力以及轉(zhuǎn)化思想的應(yīng)用.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!