《2022年高考數(shù)學(xué)分項(xiàng)匯編 專題09 圓錐曲線(含解析)文》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)分項(xiàng)匯編 專題09 圓錐曲線(含解析)文(16頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高考數(shù)學(xué)分項(xiàng)匯編 專題09 圓錐曲線(含解析)文
一.基礎(chǔ)題組
1. 【xx課標(biāo)全國(guó)Ⅱ,文5】設(shè)橢圓C:(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,P是C上的點(diǎn),PF2⊥F1F2,∠PF1F2=30°,則C的離心率為( ).
A. B. C. D.
【答案】:D
2. 【xx全國(guó)新課標(biāo),文4】設(shè)F1,F(xiàn)2是橢圓E:(a>b>0)的左、右焦點(diǎn),P為直線上一點(diǎn),△F2PF1是底角為30°的等腰三角形,則E的離心率為( )
A. B. C. D.
【答案】C
【解析】設(shè)直線與x軸交于點(diǎn)M,則∠PF2M=6
2、0°,在Rt△PF2M中,PF2=F1F2=2c,,故,解得,故離心率.
3. 【xx全國(guó)新課標(biāo),文5】中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線的一條漸近線經(jīng)過點(diǎn)(4,-2),則它的離心率為( )
A. B. C. D.
【答案】:D
4. 【xx全國(guó)2,文5】已知的頂點(diǎn)B、C在橢圓上,頂點(diǎn)A是橢圓的一個(gè)焦點(diǎn),且橢圓的另外一個(gè)焦點(diǎn)在BC邊上,則的周長(zhǎng)是( )
(A) ?。˙)6 ?。–) ?。―)12
【答案】C
5. 【xx全國(guó)2,文5】拋物線上一點(diǎn)的縱坐標(biāo)為4,則點(diǎn)與拋物線焦點(diǎn)的距離為( )
(A) 2 (B) 3 (C) 4 (D) 5
【答案】D
3、
6. 【xx全國(guó)2,文6】雙曲線的漸近線方程是( )
(A) (B) (C) (D)
【答案】C
【解析】由題意知:,∴雙曲線的漸近線方程是.
7. 【xx全國(guó)2,文20】(本小題滿分12分)
設(shè)分別是橢圓的左右焦點(diǎn),是上一點(diǎn)且與軸垂直,直線與的另一個(gè)交點(diǎn)為.
(Ⅰ)若直線的斜率為,求的離心率;
(Ⅱ)若直線在軸上的截距為,且,求.
【解析】
8. 【xx課標(biāo)全國(guó)Ⅱ,文20】(本小題滿分12分)在平面直角坐標(biāo)系xOy中,已知圓P在x軸上截得線段長(zhǎng)為在y軸上截得線段長(zhǎng)為.
(1)求圓心P的軌跡方程;
(2)若P點(diǎn)到直線y=x的距離為,求圓P的方程.
【解
4、析】:(1)設(shè)P(x,y),圓P的半徑為r.
由題設(shè)y2+2=r2,x2+3=r2.
從而y2+2=x2+3.
故P點(diǎn)的軌跡方程為y2-x2=1.
9. 【xx全國(guó)新課標(biāo),文20】設(shè)F1、F2分別是橢圓E:x2+=1(0<b<1)的左、右焦點(diǎn),過F1的直線l與E相交于A,B兩點(diǎn),且|AF2|,|AB|,|BF2|成等差數(shù)列.
(1)求|AB|;
(2)若直線l的斜率為1,求b的值.
即=|x2-x1|.
則=(x1+x2)2-4x1x2=,
解得b=.
10. 【xx全國(guó)3,文22】 (本小題滿分14分)
設(shè)兩點(diǎn)在拋物線上,是AB的垂直平分線,
(Ⅰ
5、)當(dāng)且僅當(dāng)取何值時(shí),直線經(jīng)過拋物線的焦點(diǎn)F?證明你的結(jié)論;
(Ⅱ)當(dāng)時(shí),求直線的方程.
即的斜率存在時(shí),不可能經(jīng)過焦點(diǎn)……………………………………8分
所以當(dāng)且僅當(dāng)=0時(shí),直線經(jīng)過拋物線的焦點(diǎn)F…………………………9分
(Ⅱ)當(dāng)時(shí),
二.能力題組
1. 【xx全國(guó)2,文10】設(shè)為拋物線的焦點(diǎn),過且傾斜角為的直線交于,兩點(diǎn),則 ( )
(A) (B) (C) (D)
【答案】C
2. 【xx課標(biāo)全國(guó)Ⅱ,文10】設(shè)拋物線C:y2=4x的焦點(diǎn)為F,直線l過F且與C交于A,B兩點(diǎn).若|AF|=3|BF|
6、,則l的方程為( ).
A.y=x-1或y=-x+1
B.y=或y=
C.y=或y=
D.y=或y=
【答案】:C
3. 【xx全國(guó)新課標(biāo),文10】等軸雙曲線C的中心在原點(diǎn),焦點(diǎn)在x軸上,C與拋物線y2=16x的準(zhǔn)線交于A,B兩點(diǎn),,則C的實(shí)軸長(zhǎng)為( )
A. B. C.4 D.8
【答案】 C
【解析】設(shè)雙曲線的方程為,拋物線的準(zhǔn)線為x=-4,且,故可得A(-4,),B(-4,),將點(diǎn)A坐標(biāo)代入雙曲線方程得a2=4,故a=2,故實(shí)軸長(zhǎng)為4.
4. 【xx全國(guó)2,文9】已知雙曲線的一條漸近線方程為,則雙曲線的離心率為( )
(A)
7、 ?。˙) ?。–) ?。―)
【答案】A
5. 【xx全國(guó)3,文9】已知雙曲線的焦點(diǎn)為F1、F2,點(diǎn)M在雙曲線上且則點(diǎn)M到x軸的距離為 ( )
A. B. C. D.
【答案】C
6. 【xx全國(guó)新課標(biāo),文20】設(shè)拋物線C:x2=2py(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,A為C上一點(diǎn),已知以F為圓心,F(xiàn)A為半徑的圓F交l于B,D兩點(diǎn).
(1)若∠BFD=90°,△ABD的面積為,求p的值及圓F的方程;
(2)若A,B,F(xiàn)三點(diǎn)在同一直線m上,直線n與m平行,且n與C只有一個(gè)公共點(diǎn),求坐標(biāo)原點(diǎn)到m,n距離的比值.
當(dāng)m的斜率為時(shí)
8、,由已知可設(shè)n:y=x+b,代入x2=2py,得x2-px-2pb=0.
由于n與C只有一個(gè)公共點(diǎn),故=p2+8pb=0,
解得.
因?yàn)閙的截距,,所以坐標(biāo)原點(diǎn)到m,n距離的比值為3.
當(dāng)m的斜率為時(shí),由圖形對(duì)稱性可知,坐標(biāo)原點(diǎn)到m,n距離的比值為3.
三.拔高題組
1. 【xx全國(guó)2,文12】已知橢圓C:+=1(a>b>0)的離心率為,過右焦點(diǎn)F且斜率為k(k>0)的直線與C相交于A、B兩點(diǎn),若=3,則k等于( )
A.1 B. C. D.2
【答案】:B
2. 【xx全國(guó)2,文11】已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,則橢圓的離心率為( )
(A)
9、 (B) (C) (D)
【答案】:D
【解析】∵橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,∴,∴,又∵,
∴,∴,∴,∴.
3. 【xx全國(guó)2,文12】設(shè)F1,F2分別是雙曲線的左右焦點(diǎn),若點(diǎn)P在雙曲線上,且,則( )
(A) (B) (C) (D)
【答案】:B
4. 【xx全國(guó)2,文11】過點(diǎn)(-1,0)作拋物線的切線,則其中一條切線為( )
(A) (B) (C) (D)
【答案】D
【解析】
5. 【xx全國(guó)3,文10】設(shè)橢圓的兩個(gè)焦點(diǎn)分別為F1、、F2,過F2作橢圓長(zhǎng)軸的垂線交橢圓于點(diǎn)P,若△F1PF2為等腰直角三角形,
10、則橢圓的離心率是 ( )
A. B. C. D.
【答案】D
【解析】,,則垂線,,∴,
∴,,,所以,即a2-c2=2ac,即c2+2ac-a2=0,
∴,∴,∵0
11、
(2)設(shè)C的右頂點(diǎn)為A,右焦點(diǎn)為F,|DF|·|BF|=17,證明過A、B、D三點(diǎn)的圓與x軸相切.
【解析】:(1)由題設(shè)知,l的方程為y=x+2.
代入C的方程,并化簡(jiǎn),得
(b2-a2)x2-4a2x-4a2-a2b2=0,
設(shè)B(x1,y1)、D(x2,y2),
則x1+x2=,x1x2=-, ①
由M(1,3)為BD的中點(diǎn)知=1,故
×=1,即b2=3a2, ②
故c==2a,所以C的離心率e==2.
故|BD|=|x1-x2|=·=6.
連結(jié)MA,則由A(1,0),M(1,3)知|
12、MA|=3,從而MA=MB=MD,且MA⊥x軸,因此以M為圓心,MA為半徑的圓經(jīng)過A、B、D三點(diǎn),且在點(diǎn)A處與x軸相切.
所以過A、B、D三點(diǎn)的圓與x軸相切.
8. 【xx全國(guó)2,文22】(本小題滿分12分)
已知拋物線的焦點(diǎn)為F,A、B是拋物線上的兩動(dòng)點(diǎn),且過A、B兩點(diǎn)分別作拋物線的切線,設(shè)其交點(diǎn)為M。
(I)證明為定值;
(II)設(shè)的面積為S,寫出的表達(dá)式,并求S的最小值。
(Ⅱ)由(Ⅰ)知在△ABM中,F(xiàn)M⊥AB,因而S=|AB||FM|.
|FM|==
=
==+.
因?yàn)閨AF|、|BF|分別等于A、B到拋物線準(zhǔn)線y=-1的距離,所以
|AB|=|AF|+|BF|=y(tǒng)1+y2+2=λ++2=(+)2.
于是 S=|AB||FM|=(+)3,
由+≥2知S≥4,且當(dāng)λ=1時(shí),S取得最小值4.
9. 【xx全國(guó)2,文22】(本小題滿分14分)
、、、四點(diǎn)都在橢圓上,為橢圓在軸正半軸上的焦點(diǎn).已知與共線,與共線,且.求四邊形的面積的最小值和最大值.
(1)當(dāng)≠0時(shí),MN的斜率為-,同上可推得
故四邊形面積
令=得
∵=≥2
當(dāng)=±1時(shí)=2,S=且S是以為自變量的增函數(shù)
∴
②當(dāng)=0時(shí),MN為橢圓長(zhǎng)軸,|MN|=2,|PQ|=?!郤=|PQ||MN|=2
綜合①②知四邊形PMQN的最大值為2,最小值為。