《2022年高中數(shù)學(xué) 第三章《函數(shù)的極值與導(dǎo)數(shù)》教案 新人教A版選修1-1》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高中數(shù)學(xué) 第三章《函數(shù)的極值與導(dǎo)數(shù)》教案 新人教A版選修1-1(5頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高中數(shù)學(xué) 第三章《函數(shù)的極值與導(dǎo)數(shù)》教案 新人教A版選修1-1
教學(xué)目標(biāo):
1.理解極大值、極小值的概念;
2.能夠運(yùn)用判別極大值、極小值的方法來求函數(shù)的極值;
3.掌握求可導(dǎo)函數(shù)的極值的步驟;
教學(xué)重點(diǎn):極大、極小值的概念和判別方法,以及求可導(dǎo)函數(shù)的極值的步驟.
教學(xué)難點(diǎn):對(duì)極大、極小值概念的理解及求可導(dǎo)函數(shù)的極值的步驟.
教學(xué)過程:
創(chuàng)設(shè)情景
觀察圖3.3-8,我們發(fā)現(xiàn),時(shí),高臺(tái)跳水運(yùn)動(dòng)員距水面高度最大.那么,函數(shù)在此點(diǎn)的導(dǎo)數(shù)是多少呢?此點(diǎn)附近的圖像有什么特點(diǎn)?相應(yīng)地,導(dǎo)數(shù)的符號(hào)有什么變化規(guī)律?
放大附近函數(shù)的圖像,如圖3.3-9.可以看出;在,當(dāng)時(shí),函數(shù)單調(diào)
2、遞增,;當(dāng)時(shí),函數(shù)單調(diào)遞減,;這就說明,在附近,函數(shù)值先增(,)后減(,).這樣,當(dāng)在的附近從小到大經(jīng)過時(shí),先正后負(fù),且連續(xù)變化,于是有.
3.3-9
3.3-8
對(duì)于一般的函數(shù),是否也有這樣的性質(zhì)呢?
附:對(duì)極大、極小值概念的理解,可以結(jié)合圖象進(jìn)行說明.并且要說明函數(shù)的極值是就函數(shù)在某一點(diǎn)附近的小區(qū)間而言的. 從圖象觀察得出,判別極大、極小值的方法.判斷極值點(diǎn)的關(guān)鍵是這點(diǎn)兩側(cè)的導(dǎo)數(shù)異號(hào)
新課講授
一、 導(dǎo)入新課
觀察下圖中P點(diǎn)附近圖像從左到右的變化趨勢、P點(diǎn)的函數(shù)值以及點(diǎn)P位置的特點(diǎn)
o
a
x1
x2
x3
4
b
x
y
P(x1,f(x
3、1))
y=f(x)
Q(x2,f(x2))
函數(shù)圖像在P點(diǎn)附近從左側(cè)到右側(cè)由“上升”變?yōu)椤跋陆怠保ê瘮?shù)由單調(diào)遞增變?yōu)閱握{(diào)遞減),在P點(diǎn)附近,P點(diǎn)的位置最高,函數(shù)值最大
二、學(xué)生活動(dòng)
學(xué)生感性認(rèn)識(shí)運(yùn)動(dòng)員的運(yùn)動(dòng)過程,體會(huì)函數(shù)極值的定義.
三、數(shù)學(xué)建構(gòu)
x
0
2
y
極值點(diǎn)的定義:
觀察右圖可以看出,函數(shù)在x=0的函數(shù)值比它附近所有
各點(diǎn)的函數(shù)值都大,我們說f (0)是函數(shù)的一個(gè)極大值;函數(shù)在x=2的函數(shù)值比它附近所有各點(diǎn)的函數(shù)值都小,我們說f (2)是函數(shù)的一個(gè)極小值。
一般地,設(shè)函數(shù)在及其附近有定義,如果的值比附近所有各
4、點(diǎn)的函數(shù)值都大,我們說f ()是函數(shù)的一個(gè)極大值;如果的值比附近所有各點(diǎn)的函數(shù)值都小,我們說f ()是函數(shù)的一個(gè)極小值。極大值與極小值統(tǒng)稱極值。
取得極值的點(diǎn)稱為極值點(diǎn),極值點(diǎn)是自變量的值,極值指的是函數(shù)值。
請注意以下幾點(diǎn):(讓同學(xué)討論)
(?。O值是一個(gè)局部概念。由定義可知極值只是某個(gè)點(diǎn)的函數(shù)值與它附近點(diǎn)的函數(shù)值比較是最大或最小。并不意味著它在函數(shù)的整個(gè)的定義域內(nèi)最大或最小。
(ⅱ)函數(shù)的極值不是唯一的。即一個(gè)函數(shù)在某區(qū)間上或定義域內(nèi)極大值或極小值可以不止一個(gè)。
o
a
x1
x2
x3
x4
b
x
y
(ⅲ)極大值與極小值之間無確定的大小關(guān)系。即一個(gè)
5、函數(shù)的極大值未必大于極小值,如下圖所示,是極大值點(diǎn),是極小值點(diǎn),而>。
(ⅳ)函數(shù)的極值點(diǎn)一定出現(xiàn)在區(qū)間的內(nèi)部,區(qū)間的端點(diǎn)不能成為極值點(diǎn)。而使函數(shù)取得最大值、最小值的點(diǎn)可能在區(qū)間的內(nèi)部,也可能在區(qū)間的端點(diǎn)。
極值點(diǎn)與導(dǎo)數(shù)的關(guān)系:]
復(fù)習(xí)可導(dǎo)函數(shù)在定義域上的單調(diào)性與導(dǎo)函數(shù)值的相互關(guān)系,引導(dǎo)學(xué)生尋找函數(shù)極值點(diǎn)與導(dǎo)數(shù)之間的關(guān)系.
由上圖可以看出,在函數(shù)取得極值處,如果曲線有切線的話,則切線是水平的,從而有。但反過來不一定。若尋找函數(shù)極值點(diǎn),可否只由=0求得即可?
探索:x=0是否是函數(shù)=x的極值點(diǎn)?(展示此函數(shù)的圖形)
在處,曲線的切線是水平的,即=
6、0,但這點(diǎn)的函數(shù)值既不比它附近的點(diǎn)的函數(shù)值大,也不比它附近的點(diǎn)的函數(shù)值小,故不是極值點(diǎn)。如果使,那么在什么情況下是的極值點(diǎn)呢?
觀察下左圖所示,若是的極大值點(diǎn),則兩側(cè)附近點(diǎn)的函數(shù)值必須小于。因此,的左側(cè)附近只能是增函數(shù),即,的右側(cè)附近只能是減函數(shù),即,同理,如下右圖所示,若是極小值點(diǎn),則在的左側(cè)附近只能是減函數(shù),即,在的右側(cè)附近只能是增函數(shù),即,
o
a
x0
b
x
y
o
a
x0
b
x
y
從而我們得出結(jié)論(給出尋找和判斷可導(dǎo)函數(shù)的極值點(diǎn)的方法,同時(shí)鞏固導(dǎo)數(shù)與函數(shù)單調(diào)性之間的關(guān)系):
若滿足,且在
7、的兩側(cè)的導(dǎo)數(shù)異號(hào),則是的極值點(diǎn),是極值,并且如果在兩側(cè)滿足“左正右負(fù)”,則是的極大值點(diǎn),是極大值;如果在兩側(cè)滿足“左負(fù)右正”,則是的極小值點(diǎn),是極小值。
結(jié)論:左右側(cè)導(dǎo)數(shù)異號(hào) 是函數(shù)f(x)的極值點(diǎn) =0
反過來是否成立?各是什么條件?
點(diǎn)是極值點(diǎn)的充分不必要條件是在這點(diǎn)兩側(cè)的導(dǎo)數(shù)異號(hào);點(diǎn)是極值點(diǎn)的必要不充分條件是在這點(diǎn)的導(dǎo)數(shù)為0.
學(xué)生活動(dòng)
函數(shù)y=f(x)的導(dǎo)數(shù)y/與函數(shù)值和極值之間的關(guān)系為(D )
A、導(dǎo)數(shù)y/由負(fù)變正,則函數(shù)y由減變?yōu)樵?且有極大值
B、導(dǎo)數(shù)y/由負(fù)變正,則函數(shù)y由增變?yōu)闇p,且有極大值
C、導(dǎo)數(shù)y/由正變負(fù),則函數(shù)y由增變?yōu)?/p>
8、減,且有極小值
D、導(dǎo)數(shù)y/由正變負(fù),則函數(shù)y由增變?yōu)闇p,且有極大值
四、數(shù)學(xué)應(yīng)用
o
x
y
例1.(課本例4)求的極值
解: 因?yàn)?,所?
。
下面分兩種情況討論:
(1)當(dāng)>0,即,或時(shí);
(2)當(dāng)<0,即時(shí).
當(dāng)x變化時(shí), ,的變化情況如下表:
-2
(-2,2)
2
+
0
-
0
+
↗
極大值
↘
極小值
↗
因此,當(dāng)時(shí),有極大值,并且極大值為;
當(dāng)時(shí),有極小值,并且極小值為。
函數(shù)的圖像如圖所示。
課堂訓(xùn)練:求下列函數(shù)的極值
9、
讓學(xué)生討論總結(jié)求可導(dǎo)函數(shù)的極值的基本步驟與方法:
一般地,如果函數(shù)在某個(gè)區(qū)間有導(dǎo)數(shù),可以用下面方法求它的極值:
① 確定函數(shù)的定義域; ② 求導(dǎo)數(shù);③ 求方程=0的根,這些根也稱為可能極值點(diǎn);
④ 檢查在方程=0的根的左右兩側(cè)的符號(hào),確定極值點(diǎn)。(最好通過列表法)
強(qiáng)調(diào):要想知道 x0是極大值點(diǎn)還是極小值點(diǎn)就必須判斷 f¢(x0)=0左右側(cè)導(dǎo)數(shù)的符號(hào)
例題2(案例分析)
函數(shù) 在 x=1 時(shí)有極值10,則a,b的值為(C )
A、 或
B、
10、 或
C、 D、 以上都不對(duì)
略解:由題設(shè)條件得: 解之得
通過驗(yàn)證,都合要求,故應(yīng)選擇A
上述解法錯(cuò)誤,正確答案選C,注意代入檢驗(yàn)
注意:f/(x0)=0是函數(shù)取得極值的必要不充分條件
練習(xí): 庖丁解牛篇(感受高考)
1、(xx年天津卷)函數(shù)的定義域?yàn)殚_區(qū)間,導(dǎo)函數(shù)在內(nèi)的圖象如圖所示,則函數(shù)在開區(qū)間內(nèi)有極小值點(diǎn)( A )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D. 4個(gè)
注意:數(shù)形結(jié)合以及原函數(shù)與導(dǎo)函數(shù)圖像的區(qū)別
2、已知函數(shù)在點(diǎn)處
11、取得極大值,其導(dǎo)函數(shù)的圖象經(jīng)過點(diǎn),,如圖所示.求:
(Ⅰ)的值; (Ⅱ)的值.
答案 (Ⅰ)=1; (Ⅱ)
例3求y=(x2-1)3+1的極值
解:y′=6x(x2-1)2=6x(x+1)2(x-1)2
令y′=0解得x1=-1,x2=0,x3=1
當(dāng)x變化時(shí),y′,y的變化情況如下表
-1
(-1,0)
0
(0,1)
1
-
0
-
0
+
0
+
↘
無極值
↘
極小值0
↗
無極值
↗
∴當(dāng)x=0時(shí),y有極小值且y極小值=0
五:回顧與小結(jié):
1、極值的判定方法; 2、極值的求法
注意點(diǎn):
1、f /(x0)=0是函數(shù)取得極值的必要不充分條件
2、數(shù)形結(jié)合以及函數(shù)與方程思想的應(yīng)用
3、要想知道 x0是極大值點(diǎn)還是極小值點(diǎn)就必須判斷 f¢(x0)=0左右側(cè)導(dǎo)數(shù)的符號(hào).