《2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題1 高考客觀題??贾R(shí)補(bǔ)償練習(xí) 文》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題1 高考客觀題??贾R(shí)補(bǔ)償練習(xí) 文(2頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題1 高考客觀題??贾R(shí)補(bǔ)償練習(xí) 文
一、函數(shù)的圖象與性質(zhì)
本卷第6,12,15,16題考查了函數(shù)的圖象與性質(zhì),此類題目的考查角度有給出函數(shù)的解析式判斷函數(shù)的圖象、函數(shù)的性質(zhì)與函數(shù)零點(diǎn)相結(jié)合求參數(shù)的范圍、比較函數(shù)值的大小、解與函數(shù)性質(zhì)有關(guān)的不等式等.準(zhǔn)確求解此類問(wèn)題的關(guān)鍵是要熟練掌握基本初等函數(shù)、二次函數(shù)的圖象與性質(zhì),做到靈活運(yùn)用.
【跟蹤訓(xùn)練】
1.設(shè)函數(shù)f(x)(x∈R)滿足f(-x)=f(x),f(x+2)=f(x),則y=f(x)的圖象可能是( )
2.(xx湖南八市3月聯(lián)考)設(shè)函數(shù)f(x)=2|x-
2、1|+x-1,g(x)=16x2-8x+1,若f(x)≤1的解集為M,g(x)≤4的解集為N,當(dāng)x∈M∩N時(shí),則函數(shù)F(x)=x2f(x)+x[f(x)]2的最大值是( )
(A)0 (B)- (C) (D)
二、函數(shù)與方程思想、數(shù)形結(jié)合思想解決函數(shù)零點(diǎn)問(wèn)題
本卷第14題考查了函數(shù)的零點(diǎn)及個(gè)數(shù)問(wèn)題、求解時(shí)要熟練掌握函數(shù)與方程的相互轉(zhuǎn)化,熟練應(yīng)用函數(shù)的基本性質(zhì)以及數(shù)形結(jié)合的思想方法.解答此類問(wèn)題出錯(cuò)的原因:一是對(duì)函數(shù)圖象的特征、形狀把握不準(zhǔn)確,造成畫(huà)圖不規(guī)范;二是對(duì)函數(shù)的基本性質(zhì)掌握不牢固.
【跟蹤訓(xùn)練】
1.(xx內(nèi)蒙古呼倫貝爾市二模)已知函數(shù)f(x)若方程f(x)-kx+k=0
3、有兩個(gè)實(shí)數(shù)根,則k的取值范圍是( )
(A)(-1,-] (B)[-,0)
(C)[-1,+∞) (D)[-,+∞)
2.(xx河南開(kāi)封市5月模擬)設(shè)f(x)是定義在R上的偶函數(shù),對(duì)任意x∈R,都有f(x-2)=f(x+2)且當(dāng)x∈[-2,0]時(shí),f(x)=()x-1,若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0(a>1)恰有3個(gè)不同的實(shí)數(shù)根,則a的取值范圍是 .?
三、分類討論思想,等價(jià)轉(zhuǎn)化思想在導(dǎo)數(shù)綜合問(wèn)題中的應(yīng)用
本卷第17,18,19,20,21大題均考查了利用導(dǎo)數(shù)解決函數(shù)的單調(diào)性、極值與最值、函數(shù)零點(diǎn)個(gè)數(shù)問(wèn)題、不等式恒成立問(wèn)題與不等式的證明問(wèn)題,
4、考查了函數(shù)與方程思想、數(shù)形結(jié)合的思想、分類討論思想及等價(jià)轉(zhuǎn)化思想的應(yīng)用.此類問(wèn)題綜合性較強(qiáng),難度較大,需要具備一定的邏輯思維能力和分析問(wèn)題與解決問(wèn)題的能力.復(fù)習(xí)備考時(shí),對(duì)導(dǎo)數(shù)的綜合應(yīng)用問(wèn)題要強(qiáng)化訓(xùn)練,認(rèn)真總結(jié),獲取求解問(wèn)題的方法與技巧.
【跟蹤訓(xùn)練】
(xx慶陽(yáng)模擬)已知函數(shù)f(x)=aln x+1,g(x)=x2+-1(a,b∈R).
(1)若曲線y=g(x)在點(diǎn)(1,g(1))處的切線平行于x軸,求b的值;
(2)當(dāng)a>0時(shí),若對(duì)?x∈(1,e),f(x)>x恒成立,求實(shí)數(shù)a的取值范圍;
(3)設(shè)p(x)=f(x)+g(x),在(1)的條件下,證明當(dāng)a≤0時(shí),對(duì)任意兩個(gè)不相等的
5、正數(shù)x1,x2,有>p().
1.(xx山西四診)函數(shù)f(x)=的圖象大致是( )
2.(xx蚌埠市一質(zhì)檢)函數(shù)y=f(x)是R上的奇函數(shù),滿足f(3+x)=f(3-x),當(dāng)x∈(0,3)時(shí),f(x)=2x,則當(dāng)x∈(-6,-3)時(shí),f(x)等于( )
(A)2x+6 (B)-2x-6 (C)2x-6 (D)-2x+6
3.(xx湖南省十三校第二次聯(lián)考)已知函數(shù)f(x)=-x+aln x(a∈R)(e=2.71828…是自然對(duì)數(shù)的底數(shù)).
(1)若函數(shù)f(x)在定義域上不單調(diào),求a的取值范圍;
(2)設(shè)函數(shù)f(x)的兩個(gè)極值點(diǎn)為x1和x2,記過(guò)點(diǎn)A(x1,f(x1)),B(x2,f(x2))的直線的斜率為k,是否存在a,使得k≤a-2?若存在,求出a的取值集合;若不存在,請(qǐng)說(shuō)明理由.