《2022年人教A版高中數(shù)學(xué) 選修2-1 2-1曲線與方程 教案》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年人教A版高中數(shù)學(xué) 選修2-1 2-1曲線與方程 教案(5頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、2022年人教A版高中數(shù)學(xué) 選修2-1 2-1曲線與方程 教案
一、教學(xué)目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
使學(xué)生掌握常用動(dòng)點(diǎn)的軌跡以及求動(dòng)點(diǎn)軌跡方程的常用技巧與方法.
(二)能力訓(xùn)練點(diǎn)
通過對求軌跡方程的常用技巧與方法的歸納和介紹,培養(yǎng)學(xué)生綜合運(yùn)用各方面知識(shí)的能力.
(三)學(xué)科滲透點(diǎn)
通過對求軌跡方程的常用技巧與方法的介紹,使學(xué)生掌握常用動(dòng)點(diǎn)的軌跡,為學(xué)習(xí)物理等學(xué)科打下扎實(shí)的基礎(chǔ).
二、教材分析
1.重點(diǎn):求動(dòng)點(diǎn)的軌跡方程的常用技巧與方法.
(解決辦法:對每種方法用例題加以說明,使學(xué)生掌握這種方法.)
2.難點(diǎn):作相關(guān)點(diǎn)法求動(dòng)點(diǎn)的軌跡方法.
(解決辦法:先使學(xué)生了解相關(guān)點(diǎn)法的思路
2、,再用例題進(jìn)行講解.)
三、活動(dòng)設(shè)計(jì)
提問、講解方法、演板、小測驗(yàn).
四、教學(xué)過程
(一)復(fù)習(xí)引入
大家知道,平面解析幾何研究的主要問題是:
(1)根據(jù)已知條件,求出表示平面曲線的方程;
(2)通過方程,研究平面曲線的性質(zhì).
我們已經(jīng)對常見曲線圓、橢圓、雙曲線以及拋物線進(jìn)行過這兩個(gè)方面的研究,今天在上面已經(jīng)研究的基礎(chǔ)上來對根據(jù)已知條件求曲線的軌跡方程的常見技巧與方法進(jìn)行系統(tǒng)分析.
(二)幾種常見求軌跡方程的方法
1.直接法
由題設(shè)所給(或通過分析圖形的幾何性質(zhì)而得出)的動(dòng)點(diǎn)所滿足的幾何條件列出等式,再用坐標(biāo)代替這等式,化簡得曲線的方程,這種方法叫直接法.
例1(1)求和
3、定圓x2+y2=k2的圓周的距離等于k的動(dòng)點(diǎn)P的軌跡方程;
(2)過點(diǎn)A(a,o)作圓O∶x2+y2=R2(a>R>o)的割線,求割線被圓O截得弦的中點(diǎn)的軌跡.
對(1)分析:
動(dòng)點(diǎn)P的軌跡是不知道的,不能考查其幾何特征,但是給出了動(dòng)點(diǎn)P的運(yùn)動(dòng)規(guī)律:|OP|=2R或|OP|=0.
解:設(shè)動(dòng)點(diǎn)P(x,y),則有|OP|=2R或|OP|=0.
即x2+y2=4R2或x2+y2=0.
故所求動(dòng)點(diǎn)P的軌跡方程為x2+y2=4R2或x2+y2=0.
對(2)分析:
題設(shè)中沒有具體給出動(dòng)點(diǎn)所滿足的幾何條件,但可以通過分析圖形的幾何性質(zhì)而得出,即圓心與弦的中點(diǎn)連線垂直于弦,它們的斜率互為負(fù)倒
4、數(shù).由學(xué)生演板完成,
解答為:設(shè)弦的中點(diǎn)為M(x,y),連結(jié)OM,則OM⊥AM.
∵kOM·kAM=-1,
其軌跡是以O(shè)A為直徑的圓在圓O內(nèi)的一段弧(不含端點(diǎn)).
2.定義法
利用所學(xué)過的圓的定義、橢圓的定義、雙曲線的定義、拋物線的定義直接寫出所求的動(dòng)點(diǎn)的軌跡方程,這種方法叫做定義法.這種方法要求題設(shè)中有定點(diǎn)與定直線及兩定點(diǎn)距離之和或差為定值的條件,或利用平面幾何知識(shí)分析得出這些條件.
直平分線l交半徑OQ于點(diǎn)P(見圖2-45),當(dāng)Q點(diǎn)在圓周上運(yùn)動(dòng)時(shí),求點(diǎn)P的軌跡方程.
分析:
∵點(diǎn)P在AQ的垂直平分線上,∴|PQ|=|PA|.
又P在半徑OQ上.∴|PO|+|P
5、Q|=R,即|PO|+|PA|=R.
故P點(diǎn)到兩定點(diǎn)距離之和是定值,可用橢圓定義,寫出P點(diǎn)的軌跡方程.
解:連接PA ∵l⊥PQ,∴|PA|=|PQ|.又P在半徑OQ上.∴|PO|+|PQ|=2.
由橢圓定義可知:P點(diǎn)軌跡是以O(shè)、A為焦點(diǎn)的橢圓.
3.相關(guān)點(diǎn)法
若動(dòng)點(diǎn)P(x,y)隨已知曲線上的點(diǎn)Q(x0,y0)的變動(dòng)而變動(dòng),且x0、y0可用x、y表示,則將Q點(diǎn)坐標(biāo)表達(dá)式代入已知曲線方程,即得點(diǎn)P的軌跡方程.這種方法稱為相關(guān)點(diǎn)法(或代換法).
例3 已知拋物線y2=x+1,定點(diǎn)A(3,1)、B為拋物線上任意一點(diǎn),點(diǎn)P在線段AB上,且有BP∶PA=1∶2,當(dāng)B點(diǎn)在拋物線上變動(dòng)
6、時(shí),求點(diǎn)P的軌跡方程.
分析:
P點(diǎn)運(yùn)動(dòng)的原因是B點(diǎn)在拋物線上運(yùn)動(dòng),因此B可作為相關(guān)點(diǎn),應(yīng)先找出點(diǎn)P與點(diǎn)B的聯(lián)系.
解:設(shè)點(diǎn)P(x,y),且設(shè)點(diǎn)B(x0,y0)
∵BP∶PA=1∶2,且P為線段AB的內(nèi)分點(diǎn).
4.待定系數(shù)法
求圓、橢圓、雙曲線以及拋物線的方程常用待定系數(shù)法求.
例4 已知拋物線y2=4x和以坐標(biāo)軸為對稱軸、實(shí)軸在y軸上的雙曲線僅有兩個(gè)公共點(diǎn),又直線y=2x被雙曲線截得的線段長等于,求此雙曲線的方程。
分析:
因?yàn)殡p曲線以坐標(biāo)軸為對稱軸,實(shí)軸在y軸上,所以可設(shè)雙曲線方
ax2-4b2x+a2b2=0
∵拋物線和雙曲線僅有兩個(gè)公共點(diǎn)
7、,根據(jù)它們的對稱性,這兩個(gè)點(diǎn)的橫坐標(biāo)應(yīng)相等,因此方程ax2-4b2x+a2b2=0應(yīng)有等根.
∴△=1664-4Q4b2=0,即a2=2b.
(以下由學(xué)生完成)
由弦長公式得:
即a2b2=4b2-a2.
(三)鞏固練習(xí)
用十多分鐘時(shí)間作一個(gè)小測驗(yàn),檢查一下教學(xué)效果.練習(xí)題用一小黑板給出.
1. △ABC一邊的兩個(gè)端點(diǎn)是B(0,6)和C(0,-6),另兩邊斜率的積是,求頂點(diǎn)A的軌跡。
2.點(diǎn)P與一定點(diǎn)F(2,0)的距離和它到一定直線x=8的距離的比是1∶2,求點(diǎn)P的軌跡方程,并說明軌跡是什么圖形?
答案:
(四)小結(jié)
求曲線的軌跡方程一般地有直接法、定義法、相關(guān)點(diǎn)法、待定系數(shù)法,還有參數(shù)法、復(fù)數(shù)法也是求曲線的軌跡方程的常見方法,這等到講了參數(shù)方程、復(fù)數(shù)以后再作介紹.
五、布置作業(yè)
1.兩定點(diǎn)的距離為6,點(diǎn)M到這兩個(gè)定點(diǎn)的距離的平方和為26,求點(diǎn)M的軌跡方程.
2.動(dòng)點(diǎn)P到點(diǎn)F1(1,0)的距離比它到F2(3,0)的距離少2,求P點(diǎn)的軌跡.
作業(yè)答案:
1.以兩定點(diǎn)A、B所在直線為x軸,線段AB的垂直平分線為y軸建立直角坐標(biāo)系,得點(diǎn)M的軌跡方程x2+y2=4
2.∵|PF2|-|PF|=2,且|F1F2|∴P點(diǎn)只能在x軸上且x<1,軌跡是一條射線
六、板書設(shè)計(jì)