2022年高考數(shù)學二輪復(fù)習 專題六 直線、圓、圓錐曲線 專題能力訓練16 橢圓、雙曲線、拋物線 文

上傳人:xt****7 文檔編號:105890970 上傳時間:2022-06-12 格式:DOC 頁數(shù):10 大?。?.58MB
收藏 版權(quán)申訴 舉報 下載
2022年高考數(shù)學二輪復(fù)習 專題六 直線、圓、圓錐曲線 專題能力訓練16 橢圓、雙曲線、拋物線 文_第1頁
第1頁 / 共10頁
2022年高考數(shù)學二輪復(fù)習 專題六 直線、圓、圓錐曲線 專題能力訓練16 橢圓、雙曲線、拋物線 文_第2頁
第2頁 / 共10頁
2022年高考數(shù)學二輪復(fù)習 專題六 直線、圓、圓錐曲線 專題能力訓練16 橢圓、雙曲線、拋物線 文_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學二輪復(fù)習 專題六 直線、圓、圓錐曲線 專題能力訓練16 橢圓、雙曲線、拋物線 文》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學二輪復(fù)習 專題六 直線、圓、圓錐曲線 專題能力訓練16 橢圓、雙曲線、拋物線 文(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學二輪復(fù)習 專題六 直線、圓、圓錐曲線 專題能力訓練16 橢圓、雙曲線、拋物線 文 1.(2018全國Ⅰ,文4)已知橢圓C:=1的一個焦點為(2,0),則C的離心率為(  ) A. B. C. D. 2.已知F是雙曲線C:x2-=1的右焦點,P是C上一點,且PF與x軸垂直,點A的坐標是(1,3),則△APF的面積為(  ) A. B. C. D. 3.已知O為坐標原點,F是橢圓C:=1(a>b>0)的左焦點,A,B分別為C的左、右頂點,P為C上一點,且PF⊥x軸.過點A的直線l與線段PF交于點M,與y軸交于點E.若直線BM經(jīng)過OE的中點,則C的離心率為(  ) A.

2、 B. C. D. 4.已知雙曲線=1(a>0,b>0)的右焦點為F,點A在雙曲線的漸近線上,△OAF是邊長為2的等邊三角形(O為原點),則雙曲線的方程為(  ) A.=1 B.=1 C.-y2=1 D.x2-=1 5.(2018全國Ⅱ,文11)已知F1,F2是橢圓C的兩個焦點,P是C上的一點,若PF1⊥PF2,且∠PF2F1=60°,則C的離心率為(  ) A.1- B.2- C. D.-1 6.設(shè)雙曲線=1(a>0,b>0)的右焦點為F,過點F作與x軸垂直的直線l交兩漸近線于A,B兩點,與雙曲線的一個交點為P,設(shè)O為坐標原點.若=m+n(m,n∈R),且mn=,則該雙曲線的

3、離心率為(  ) A. B. C. D. 7.已知雙曲線E:=1(a>0,b>0).矩形ABCD的四個頂點在E上,AB,CD的中點為E的兩個焦點,且2|AB|=3|BC|,則E的離心率是     .? 8.已知直線l1:x-y+5=0和l2:x+4=0,拋物線C:y2=16x,P是C上一動點,則點P到l1與l2距離之和的最小值為     .? 9.如圖,已知拋物線C1:y=x2,圓C2:x2+(y-1)2=1,過點P(t,0)(t>0)作不過原點O的直線PA,PB分別與拋物線C1和圓C2相切,A,B為切點. (1)求點A,B的坐標; (2)求△PAB的面積. 注:直線與拋

4、物線有且只有一個公共點,且與拋物線的對稱軸不平行,則稱該直線與拋物線相切,稱該公共點為切點. 10. 如圖,動點M與兩定點A(-1,0),B(1,0)構(gòu)成△MAB,且直線MA,MB的斜率之積為4,設(shè)動點M的軌跡為C. (1)求軌跡C的方程; (2)設(shè)直線y=x+m(m>0)與y軸相交于點P,與軌跡C相交于點Q,R,且|PQ|<|PR|,求的取值范圍. 11.設(shè)橢圓=1(a>)的右焦點為F,右頂點為A.已知,其中O為原點,e為橢圓的離心率. (1)求橢圓的方程; (2)設(shè)過點A的直線l與橢圓交于點B(B不在x軸上),垂直于l的直線與l交于點M,與y軸

5、交于點H.若BF⊥HF,且∠MOA=∠MAO,求直線l的斜率. 二、思維提升訓練 12.(2018全國Ⅲ,文10)已知雙曲線C:=1(a>0,b>0)的離心率為,則點(4,0)到C的漸近線的距離為 (  ) A. B.2 C. D.2 13.設(shè)拋物線C:y2=2px(p>0)的焦點為F,點M在C上,|MF|=5.若以MF為直徑的圓過點(0,2),則C的方程為(  ) A.y2=4x或y2=8x B.y2=2x或y2=8x C.y2=4x或y2=16x D.y2=2x或y2=16x 14.在平面直角坐標系xOy中,雙曲線-y2=1的右準線與它的兩條漸近線分別交于點P,Q

6、,其焦點是F1,F2,則四邊形F1PF2Q的面積是     .? 15.在平面直角坐標系xOy中,雙曲線=1(a>0,b>0)的右支與焦點為F的拋物線x2=2py(p>0)交于A,B兩點,若|AF|+|BF|=4|OF|,則該雙曲線的漸近線方程為     .? 16.已知圓C:(x+1)2+y2=20,點B(1,0),點A是圓C上的動點,線段AB的垂直平分線與線段AC交于點P. (1)求動點P的軌跡C1的方程; (2)設(shè)M,N為拋物線C2:y=x2上的一動點,過點N作拋物線C2的切線交曲線C1于P,Q兩點,求△MPQ面積的最大值. 17.已知動點C是橢圓Ω:+y2=1(a

7、>1)上的任意一點,AB是圓G:x2+(y-2)2=的一條直徑(A,B是端點),的最大值是. (1)求橢圓Ω的方程. (2)已知橢圓Ω的左、右焦點分別為點F1,F2,過點F2且與x軸不垂直的直線l交橢圓Ω于P,Q兩點.在線段OF2上是否存在點M(m,0),使得以MP,MQ為鄰邊的平行四邊形是菱形?若存在,求實數(shù)m的取值范圍;若不存在,請說明理由. 專題能力訓練16 橢圓、雙曲線、拋物線 一、能力突破訓練 1.C 解析 因為橢圓C的一個焦點為(2,0),所以其焦點在x軸上,c=2,所以a2-4=c2,所以a2=8,a=2,所以橢圓C的離心率e=. 2.D 解析 由c2=a2+b2

8、=4,得c=2,所以點F的坐標為(2,0).將x=2代入x2-=1,得y=±3,所以PF=3.又點A的坐標是(1,3),故△APF的面積為×3×(2-1)=,故選D. 3.A 解析 由題意知,A(-a,0),B(a,0),根據(jù)對稱性, 不妨令P, 設(shè)l:x=my-a, ∴M,E. ∴直線BM:y=-(x-a). 又直線BM經(jīng)過OE的中點, ∴,解得a=3c. ∴e=,故選A. 4.D 解析 ∵雙曲線=1(a>0,b>0)的右焦點為F(c,0),點A在雙曲線的漸近線上,且△OAF是邊長為2的等邊三角形,不妨設(shè)點A在漸近線y=x上, ∴解得所以雙曲線的方程為x2-=1.故選D.

9、 5.D 解析 不妨設(shè)橢圓方程為=1(a>b>0),F1,F2分別為橢圓的左、右焦點,則|PF1|+|PF2|=2a. ∵∠F2PF1=90°,∠PF2F1=60°, ∴c+c=2a,即(+1)c=2a. ∴e=-1. 6.C 解析 在y=±x中令x=c,得A,B,在雙曲線=1中令x=c得P. 當點P的坐標為時,由=m+n, 得 由(舍去), ∴, ∴, ∴e=. 同理,當點P的坐標為時,e=. 故該雙曲線的離心率為. 7. 2 解析 由題意不妨設(shè)AB=3,則BC=2. 設(shè)AB,CD的中點分別為M,N,如圖, 則在Rt△BMN中,MN=2, 故BN=.

10、 由雙曲線的定義可得2a=BN-BM==1, 而2c=MN=2,所以雙曲線的離心率e==2. 8. 解析 在同一坐標系中畫出直線l1,l2和曲線C如圖. P是C上任意一點,由拋物線的定義知,|PF|=d2, ∴d1+d2=d1+|PF|,顯然當PF⊥l1, 即d1+d2=|FM|時,距離之和取到最小值. ∵|FM|=, ∴所求最小值為. 9.解 (1)由題意知直線PA的斜率存在,故可設(shè)直線PA的方程為y=k(x-t), 由消去y,整理得:x2-4kx+4kt=0, 由于直線PA與拋物線相切,得k=t. 因此,點A的坐標為(2t,t2). 設(shè)圓C2的圓心為D(0,1

11、),點B的坐標為(x0,y0),由題意知:點B,O關(guān)于直線PD對稱, 故解得 因此,點B的坐標為. (2)由(1)知|AP|=t·和直線PA的方程tx-y-t2=0. 點B到直線PA的距離是d=. 設(shè)△PAB的面積為S(t), 所以S(t)=|AP|·d=. 10.解 (1)設(shè)M的坐標為(x,y),當x=-1時,直線MA的斜率不存在; 當x=1時,直線MB的斜率不存在. 于是x≠1,且x≠-1. 此時,MA的斜率為,MB的斜率為. 由題意,有=4. 整理,得4x2-y2-4=0. 故動點M的軌跡C的方程為4x2-y2-4=0(x≠±1). (2)由消去y,可得3x2

12、-2mx-m2-4=0. ① 對于方程①,其判別式Δ=(-2m)2-4×3(-m2-4)=16m2+48>0, 而當1或-1為方程①的根時,m的值為-1或1. 結(jié)合題設(shè)(m>0)可知,m>0,且m≠1. 設(shè)Q,R的坐標分別為(xQ,yQ),(xR,yR), 則xQ,xR為方程①的兩根, 因為|PQ|<|PR|,所以|xQ|<|xR|. 因為xQ=,xR=,且Q,R在同一條直線上, 所以=1+.此時>1,且≠2, 所以1<1+<3, 且1+, 所以1<<3,且. 綜上所述,的取值范圍是. 11.解 (1)設(shè)F(c,0).由,即,可得a2-c2=3c2, 又a2-c2=

13、b2=3,所以c2=1,因此a2=4. 所以,橢圓的方程為=1. (2)設(shè)直線l的斜率為k(k≠0),則直線l的方程為y=k(x-2).設(shè)B(xB,yB),由方程組消去y,整理得(4k2+3)x2-16k2x+16k2-12=0. 解得x=2,或x=,由題意得xB=,從而yB=. 由(1)知,F(1,0),設(shè)H(0,yH),有=(-1,yH),. 由BF⊥HF,得=0,所以=0,解得yH=.因此直線MH的方程為y=-x+. 設(shè)M(xM,yM),由方程組消去y,解得xM=.在△MAO中,∠MOA=∠MAO?|MA|=|MO|,即(xM-2)2+,化簡得xM=1,即=1,解得k=-,或

14、k=.所以,直線l的斜率為-. 二、思維提升訓練 12.D 解析 ∵雙曲線C的離心率為, ∴e=,即c=a,a=b. ∴其漸近線方程為y=±x,則(4,0)到C的漸近線距離d==2. 13.C 解析 設(shè)點M的坐標為(x0,y0),由拋物線的定義,得|MF|=x0+=5,則x0=5-. 因為點F的坐標為, 所以以MF為直徑的圓的方程為(x-x0)·+(y-y0)y=0. 將x=0,y=2代入得px0+8-4y0=0, 即-4y0+8=0,解得y0=4. 由=2px0,得16=2p, 解得p=2或p=8. 所以C的方程為y2=4x或y2=16x.故選C. 14.2 解析

15、該雙曲線的右準線方程為x=,兩條漸近線方程為y=±x,得P,Q,又c=,所以F1(-,0),F2(,0),四邊形F1PF2Q的面積S=2=2. 15.y=±x 解析 拋物線x2=2py的焦點F,準線方程為y=-. 設(shè)A(x1,y1),B(x2,y2),則|AF|+|BF|=y1++y2+=y1+y2+p=4|OF|=4·=2p. 所以y1+y2=p. 聯(lián)立雙曲線與拋物線方程得 消去x,得a2y2-2pb2y+a2b2=0. 所以y1+y2==p, 所以. 所以該雙曲線的漸近線方程為y=±x. 16.解 (1)由已知可得,點P滿足|PB|+|PC|=|AC|=2>2=|BC|,

16、 所以動點P的軌跡C1是一個橢圓,其中2a=2,2c=2. 動點P的軌跡C1的方程為=1. (2)設(shè)N(t,t2),則PQ的方程為 y-t2=2t(x-t)?y=2tx-t2. 聯(lián)立方程組消去y整理,得(4+20t2)x2-20t3x+5t4-20=0, 有 而|PQ|=×|x1-x2|=,點M到PQ的高為h=, 由S△MPQ=|PQ|h代入化簡,得 S△MPQ=,當且僅當t2=10時,S△MPQ可取最大值. 17.解 (1)設(shè)點C的坐標為(x,y),則+y2=1. 連接CG,由,又G(0,2),=(-x,2-y), 可得=x2+(y-2)2-=a(1-y2)+(y-2

17、)2-=-(a-1)y2-4y+a+,其中y∈[-1,1]. 因為a>1,所以當y=≤-1,即1-1,即a>3時,的最大值是, 由條件得, 即a2-7a+10=0, 解得a=5或a=2(舍去). 綜上所述,橢圓Ω的方程是+y2=1. (2)設(shè)點P(x1,y1),Q(x2,y2),PQ的中點坐標為(x0,y0),則滿足=1,=1,兩式相減, 整理,得=-=-, 從而直線PQ的方程為y-y0=-(x-x0). 又右焦點F2的坐標是(2,0), 將點F2的坐標代入PQ的方程得 -y0=-(2-x0), 因為直線l與x軸不垂直,所以2x0-=5>0,從而0

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!