2022年高考數(shù)學二輪復習 專題突破課時作業(yè)8 三角變換與解三角形 理

上傳人:xt****7 文檔編號:106013019 上傳時間:2022-06-13 格式:DOC 頁數(shù):9 大?。?4.50KB
收藏 版權申訴 舉報 下載
2022年高考數(shù)學二輪復習 專題突破課時作業(yè)8 三角變換與解三角形 理_第1頁
第1頁 / 共9頁
2022年高考數(shù)學二輪復習 專題突破課時作業(yè)8 三角變換與解三角形 理_第2頁
第2頁 / 共9頁
2022年高考數(shù)學二輪復習 專題突破課時作業(yè)8 三角變換與解三角形 理_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學二輪復習 專題突破課時作業(yè)8 三角變換與解三角形 理》由會員分享,可在線閱讀,更多相關《2022年高考數(shù)學二輪復習 專題突破課時作業(yè)8 三角變換與解三角形 理(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考數(shù)學二輪復習 專題突破課時作業(yè)8 三角變換與解三角形 理 1.[2018·全國卷Ⅲ]若sin α=,則cos 2α=(  ) A. B. C.- D.- 解析:∵ sin α=,∴ cos 2α=1-2sin2α=1-2×2=. 故選B. 答案:B 2.已知sin=,cos2α=,則sinα等于(  ) A. B.- C.- D. 解析:(1)由sin=, 得sinαcos-cosαsin=, 即sinα-cosα=,① 又cos2α=,所以cos2α-sin2α=, 即(cosα+sinα)·(cosα-sinα)=, 因此c

2、osα+sinα=-.② 由①②得sinα=,故選D. 答案:D 3.[2018·全國卷Ⅱ]在△ABC中,cos=,BC=1,AC=5,則AB=(  ) A.4 B. C. D.2 解析:∵ cos=, ∴ cos C=2cos2-1=2×2-1=-. 在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC·cos C=52+12-2×5×1×=32, ∴ AB==4. 故選A. 答案:A 4.[2017·全國卷Ⅲ]函數(shù)f(x)=的最小正周期為(  ) A. B. C.π D.2π 解析:由已知得f(x)====sin x·cos x=sin

3、 2x,所以f(x)的最小正周期為T==π. 故選C. 答案:C 5.設α∈,β∈,且tanα=,則(  ) A.3α-β= B.3α+β= C.2α-β= D.2α+β= 解析:通解 由tanα=得=,即sinαcosβ=cosα+sinβcosα,所以sin(α-β)=cosα,又cosα=sin,所以sin(α-β)=sin,又因為α∈,β∈,所以-<α-β<,0<-α<,因為α-β=-α,所以2α-β=,故選C. 優(yōu)解一 ∵tan=, 由tanα=知,α、β應為2倍角關系,A、B項中有3α,不合題意,C項中有2α-β=. 把β=2α-代入 = ==tanα,題

4、設成立.故選C. 優(yōu)解二?。剑絫an ∴tanα=tan 又∵α∈,β∈,∴∈, ∴+∈,∴α=+, ∴2α=+β,∴2α-β=.故選C. 答案:C 6.[2018·全國卷Ⅲ]△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.若△ABC的面積為,則C=(  ) A. B. C. D. 解析:∵ S=absin C===abcos C,∴ sin C=cos C,即tan C=1. ∵ C∈(0,π),∴ C=. 故選C. 答案:C 7.[2018·廣州調研]將函數(shù)y=2sinsin的圖象向左平移φ(φ>0)個單位長度,所得圖象對應的函數(shù)恰為奇函數(shù),則φ的最小值為(

5、  ) A. B. C. D. 解析:由y=2sinsin可得y=2sincos=sin,該函數(shù)的圖象向左平移φ個單位長度后,所得圖象對應的函數(shù)解析式為g(x)=sin=sin,因為g(x)=sin為奇函數(shù),所以2φ+=kπ(k∈Z),φ=-(k∈Z),又φ>0,故φ的最小值為,選A. 答案:A 8.[2018·鄭州測試]在△ABC中,A=60°,b=1,S△ABC=,則=(  ) A. B. C. D.2 解析:依題意得,bcsinA=c=,則c=4.由余弦定理得a==,因此==.由正弦定理得=,故選B. 答案:B 9.[2018·安徽質量檢測]在銳角三角形ABC

6、中,b2cosAcosC=accos2B,則B的取值范圍為(  ) A. B. C. D. 解析:解法一 由b2cosAcosC=accos2B,并結合正弦定理得sin2BcosAcosC=sinAsinCcos2B,即tan2B=tanAtanC,所以tan2B=-tanAtan(A+B),即tan2B=-tanA·,整理得tan2A-(tan3B-tanB)tanA+tan2B=0,則關于tanA的一元二次方程根的判別式Δ=(tan3B-tanB)2-4tan2B≥0,所以(tan2B-3)(tan2B+1)≥0,所以tanB≥,又△ABC為銳角三角形,所以≤B<,即B的取值范圍

7、為. 解法二 由b2cosAcosC=accos2B,并結合余弦定理得b2··=ac·2,即(b2+c2-a2)·(b2+a2-c2)=(c2+a2-b2)2,即b4-(a2-c2)2=b4+(c2+a2)2-2b2(c2+a2),化簡得a4+c4=b2(c2+a2),則cosB===≤=,當且僅當a=c時,等號成立.又△ABC為銳角三角形,所以≤B<,即B的取值范圍為. 答案:B 10.[2018·安徽省質量檢測]已知α∈,cos=,則sin=________. 解析:由α∈可得α+∈,又cos=,∴sin=, ∴sin=sin=sin+cos=×+×=. 答案: 11.

8、 如圖,為了估測某塔的高度,在同一水平面的A,B兩點處進行測量,在點A處測得塔頂C在西偏北20°的方向上,仰角為60°;在點B處測得塔頂C在東偏北40°的方向上,仰角為30°.若A,B兩點相距130 m,則塔的高度CD=________ m. 解析:分析題意可知,設CD=h,則AD=,BD=h,在△ADB中,∠ADB=180°-20°-40°=120°,所以由余弦定理得AB2=BD2+AD2-2BD·AD·cos120°,可得1302=3h2+-2·h··, 解得h=10,故塔的高度為10 m. 答案:10 12.[2018·全國卷Ⅰ]△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.已

9、知bsin C+csin B=4asin Bsin C,b2+c2-a2=8,則△ABC的面積為________. 解析:∵ bsin C+csin B=4asin Bsin C, ∴ 由正弦定理得sin Bsin C+sin Csin B=4sin Asin Bsin C. 又sin Bsin C >0,∴ sin A=. 由余弦定理得cos A===>0, ∴ cos A=,bc==, ∴ S△ABC=bcsin A=××=. 答案: 13.[2018·浙江卷]已知角α的頂點與原點O重合,始邊與x軸的非負半軸重合,它的終邊過點P. (1)求sin(α+π)的值; (2)

10、若角β滿足sin(α+β)=,求cos β的值. 解析:(1)解:由角α的終邊過點P, 得sin α=-. 所以sin(α+π)=-sin α=. (2)解:由角α的終邊過點P, 得cos α=-. 由sin(α+β)=,得cos(α+β)=±. 由β=(α+β)-α, 得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-或cos β=. 14.[2018·江蘇卷]已知α,β為銳角,tan α=,cos(α+β)=-. (1)求cos 2α的值; (2)求tan(α-β)的值. 解析:(1)解:因為tan α=,tan α=,

11、所以sin α=cos α. 因為sin2α+cos2α=1, 所以cos2α=, 因此,cos 2α=2cos2α-1=-. (2)解:因為α,β為銳角,所以α+β∈(0,π). 又因為cos(α+β)=-, 所以sin(α+β)==, 因此tan(α+β)=-2. 因為tan α=, 所以tan 2α==-. 因此,tan(α-β)=tan[2α-(α+β)] ==-. 15.[2018·長沙,南昌聯(lián)合模擬]在△ABC中,角A,B,C所對的邊分別為a,b,c,且bsinB=asinA+(c-a)sinC. (1)求B; (2)若3sinC=2sinA,且△ABC

12、的面積為6,求b. 解析:(1)由bsinB=asinA+(c-a)sinC及正弦定理,得b2=a2+(c-a)c,即a2+c2-b2=ac. 由余弦定理,得cosB===, 因為B∈(0,π),所以B=. (2)由(1)得B=, 所以△ABC的面積為acsinB=ac=6,得ac=24. 由3sinC=2sinA及正弦定理,得3c=2a, 所以a=6,c=4. 由余弦定理,得b2=a2+c2-2accosB=36+16-24=28, 所以b=2. 16.[2018·南昌模擬]已知函數(shù)f(x)=1+2sincos-2cos2,△ABC的內(nèi)角A,B,C的對邊分別為a,b,c. (1)求f(A)的取值范圍; (2)若A為銳角且f(A)=,2sinA=sinB+sinC,△ABC的面積為,求b的值. 解析:(1)f(x)=sinx-cosx=2sin, ∴f(A)=2sin, 由題意知,0

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!