2020高考數(shù)學一輪復習 矩陣與變換教案 理 選修4-2

上傳人:艷*** 文檔編號:110527083 上傳時間:2022-06-18 格式:DOC 頁數(shù):6 大?。?18KB
收藏 版權申訴 舉報 下載
2020高考數(shù)學一輪復習 矩陣與變換教案 理 選修4-2_第1頁
第1頁 / 共6頁
2020高考數(shù)學一輪復習 矩陣與變換教案 理 選修4-2_第2頁
第2頁 / 共6頁
2020高考數(shù)學一輪復習 矩陣與變換教案 理 選修4-2_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020高考數(shù)學一輪復習 矩陣與變換教案 理 選修4-2》由會員分享,可在線閱讀,更多相關《2020高考數(shù)學一輪復習 矩陣與變換教案 理 選修4-2(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2020高考數(shù)學(理)一輪復習教案:選修4-2矩陣與變換 【2020年高考會這樣考】 1.本部分高考命題的一個熱點是矩陣變換與二階矩陣的乘法運算,考題中多考查求平面圖形在矩陣的對應變換作用下得到的新圖形,進而研究新圖形的性質(zhì). 2.本部分高考命題的另一個熱點是逆矩陣,主要考查行列式的計算、逆矩陣的性質(zhì)與求法以及借助矩陣解決二元一次方程組的求解問題. 【復習指導】 1.認真理解矩陣相等的概念,知道矩陣與矩陣的乘法的意義,并能熟練進行矩陣的乘法運算. 2.掌握幾種常見的變換,了解其特點及矩陣表示,注意結(jié)合圖形去理解和把握矩陣的幾種變換. 3.熟練進行行列式的求值運算,會求矩陣的逆矩陣

2、,并能利用逆矩陣解二元一次方程組. 基礎梳理 1.乘法規(guī)則 (1)行矩陣[a11 a12]與列矩陣的乘法規(guī)則: [a11 a12]=[a11×b11+a12×b21]. (2)二階矩陣與列向量的乘法規(guī)則: =. (3)兩個二階矩陣相乘的結(jié)果仍然是一個矩陣,其乘法法則如下: = (4)兩個二階矩陣的乘法滿足結(jié)合律,但不滿足交換律和消去律.即(AB)C=A(BC),AB≠BA,由AB=AC不一定能推出B=C. 一般地兩個矩陣只有當前一個矩陣的列數(shù)與后一個矩陣的行數(shù)相等時才能進行乘法運算. 2.常見的平面變換 恒等變換、伸壓變換、反射變換、旋轉(zhuǎn)變換、投影變換、切變

3、變換六個變換. 3.逆變換與逆矩陣 (1)對于二階矩陣A、B,若有AB=BA=E,則稱A是可逆的,B稱為A的逆矩陣; (2)若二階矩陣A、B均存在逆矩陣,則AB也存在逆矩陣,且(AB)-1=B-1A-1. 4.特征值與特征向量 設A是一個二階矩陣,如果對于實數(shù)λ,存在一個非零向量α,使Aα=λα,那么λ稱為A的一個特征值,而α稱為A的屬于特征值λ的一個特征向量. 雙基自測 1.(2020·南通調(diào)研測試)曲線C1:x2+2y2=1在矩陣M=的作用下變換為曲線C2,求C2的方程. 解 設P(x,y)為曲線C2上任意一點,P′(x′,y′)為曲線x2+2y2=1上與P對應的點, 則

4、=,即? 因為P′是曲線C1上的點, 所以C2的方程為(x-2y)2+2y2=1. 2.已知矩陣A將點(1,0)變換為(2,3),且屬于特征值3的一個特征向量是,求矩陣A. 解 設A=,由 =,得 由=3=,得所以 所以A=. 3.(2020·蘇州調(diào)研測試)已知圓C:x2+y2=1在矩陣形A=(a>0,b>0)對應的變換作用下變?yōu)闄E圓+=1,求a,b的值. 解 設P(x,y)為圓C上的任意一點,在矩陣A對應的變換下變?yōu)榱硪粋€點P′(x′,y′), 則= ,即 又因為點P′(x′,y′)在橢圓+=1上,所以+=1.由已知條件可知,x2+y2=1,所以a2=9,b2=4. 因

5、為a>0,b>0,所以a=3,b=2. 4.(2020·南京市模擬)已知a=為矩陣A=屬于λ的一個特征向量,求實數(shù)a,λ的值及A2. 解 由條件可知 =λ, 所以解得a=λ=2. 因此A=. 所以A2= =. 考向一 矩陣與變換 【例1】?求曲線2x2-2xy+1=0在矩陣MN對應的變換作用下得到的曲線方程,其中M=,N=. [審題視點] 先求積MN,再求變換公式. 解 MN==. 設P(x′,y′)是曲線2x2-2xy+1=0上任意一點,點P在矩陣MN對應的變換下變?yōu)辄cP(x,y), 則==, 于是x′=x,y′=x+, 代入2x′2-2x′y′+1=0,得xy=1

6、. 所以曲線2x2-2xy+1=0在MN對應的變換作用下得到的曲線方程為xy=1. 【訓練1】 四邊形ABCD和四邊形A′B′C′D′分別是矩形和平行四邊形,其中點的坐標分別為A(-1,2),B(3,2),C(3,-2),D(-1,-2),A′(-1,0),B′(3,8),C′(3,4),D′(-1,-4),求將四邊形ABCD變成四邊形A′B′C′D′的變換矩陣M. 解 該變換為切變變換,設矩陣M為, 則=.所以-k+2=0,解得k=2. 所以M為. 考向二 矩陣的乘法與逆矩陣 【例2】?已知矩陣A=,B=,求(AB)-1. [審題視點] 求矩陣A=的逆矩陣,一般是設 A

7、-1=,由 =求得. 解 AB= =. 設(AB)-1=,則由(AB)·(AB)-1=, 得 =,即=, 所以解得故(AB)-1=. 【訓練2】 已知矩陣A=,B=,求矩陣AB的逆矩陣. 解 設矩陣A的逆矩陣為A-1=, 則 ==, 解之得,a=1,b=-2,c=0,d=1, 所以A-1=. 同理得,B-1=.又(AB)-1=B-1A-1, 所以(AB)-1==. 考向三 矩陣的特征值與特征向量 【例3】?已知矩陣M=,其中a∈R,若點P(1,-2)在矩陣M的變換下得到點P′(-4,0),求: (1)實數(shù)a的值; (2)矩陣M的特征值及其對應的特征向量. [審題

8、視點] f(λ)==(λ-2)(λ-1)-6. 解 (1)由=, 所以2-2a=-4.所以a=3. (2)由(1)知M=,則矩陣M的特征多項式為 f(λ)==(λ-2)(λ-1)-6=λ2-3λ-4. 令f(λ)=0,得矩陣M的特征值為-1與4. 當λ=-1時,?x+y=0. 所以矩陣M的屬于特征值-1的一個特征向量為. 當λ=4時,?2x-3y=0. 所以矩陣M的屬于特征值4的一個特征向量為. 【訓練3】 已知二階矩陣A=,矩陣A屬于特征值λ1=-1的一個特征向量為a1=,屬于特征值λ2=4的一個特征向量為a2=,求矩陣A. 解 由特征值、特征向量定義可知,Aa1=λ1

9、a1, 即=-1×,得 同理可得解得a=2,b=3,c=2,d=1. 因此矩陣A=. 矩陣的有關問題及其求解方法 矩陣與變換是理科附加題的選考題,題型主要有矩陣與變換、矩陣的乘積與逆矩陣,求矩陣的特征值與特征向量.熟悉變換問題的解題,掌握矩陣乘法法則和求矩陣特征值與特征向量的方法,會用待定系數(shù)法求逆矩陣. 【示例】? (本題滿分10分)(2020·福建)設矩陣M=(其中a>0,b>0). (1)若a=2,b=3,求矩陣M的逆矩陣M-1; (2)若曲線C:x2+y2=1在矩陣M所對應的線性變換作用下得到曲線C′:+y2=1,求a,b的值. 用待定系數(shù)法求逆矩陣. [解答示范

10、] (1)設矩陣M的逆矩陣M-1=, 則MM-1=.又M=, 所以=, 所以2x1=1,2y1=0,3x2=0,3y2=1, 即x1=,y1=0,x2=0,y2=, 故所求的逆矩陣M-1=.(5分) (2)設曲線C上任意一點P(x,y),它在矩陣M所對應的線性變換作用下得到點P′(x′,y′),則 =,即又點P′(x′,y′)在曲線C′上,所以+y′2=1, 則+b2y2=1為曲線C的方程. 又已知曲線C的方程為x2+y2=1,故 又a>0,b>0,所以(10分) 【試一試】 (2020·江蘇)已知矩陣A=,向量β=,求向量α,使得A2α=β. [嘗試解答] 設α=,由A2α=β,得=,即解得故α=.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!