河南省衛(wèi)輝一中2020屆高三數(shù)學二輪 備考抓分點透析專題6 立體幾何 理

上傳人:艷*** 文檔編號:110845778 上傳時間:2022-06-19 格式:DOC 頁數(shù):31 大小:2.83MB
收藏 版權申訴 舉報 下載
河南省衛(wèi)輝一中2020屆高三數(shù)學二輪 備考抓分點透析專題6 立體幾何 理_第1頁
第1頁 / 共31頁
河南省衛(wèi)輝一中2020屆高三數(shù)學二輪 備考抓分點透析專題6 立體幾何 理_第2頁
第2頁 / 共31頁
河南省衛(wèi)輝一中2020屆高三數(shù)學二輪 備考抓分點透析專題6 立體幾何 理_第3頁
第3頁 / 共31頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《河南省衛(wèi)輝一中2020屆高三數(shù)學二輪 備考抓分點透析專題6 立體幾何 理》由會員分享,可在線閱讀,更多相關《河南省衛(wèi)輝一中2020屆高三數(shù)學二輪 備考抓分點透析專題6 立體幾何 理(31頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2020屆高考數(shù)學二輪復習 專題六 立體幾何 【重點知識回顧】 穩(wěn)定中有所創(chuàng)新,由知識立意轉為能力立意 (1) 考查重點及難點穩(wěn)定:高考始終把空間直線與直線、直線與平面、平面與平面的平行與垂直的性質與判定,以及求線面角、二面角等知識都是重點考查的內容,其中線線角、線面角、二面角的求解更是重中之重在難度上平穩(wěn)過渡,始終以中等偏難為主。實行新課程的高考,命題者在求穩(wěn)的同時注重創(chuàng)新高考創(chuàng)新,主要體現(xiàn)在命題的立意和思路上注重對學生能力的考查 (2)空間幾何體中的三視圖仍是高考的一個重要知識點解答題的考查形式仍要注重在一個具體立體幾何模型中考查線面的關系 (3)使用,“向量”仍將會成為高

2、考命題的熱點,一般選擇題、填空題重在考查向量的概念、數(shù)量積及其運算律在有些立體幾何的解答題中,建立空間直角坐標系,以向量為工具,利用空間向量的坐標和數(shù)量積解決直線、平面問題的位置關系、角度、長度等問題,比用傳統(tǒng)立體幾何的方法簡便快捷,空間向量的數(shù)量積及坐標運算仍是2020年高考命題的重點 (4)支持新課改,在重疊部分做文章,在知識交匯點處命題 立體幾何中平行、垂直關系證明的思路清楚嗎? 平行垂直的證明主要利用線面關系的轉化: 線面平行的判定: 線面平行的性質: 三垂線定理(及逆定理):

3、 線面垂直: 面面垂直: 三類角的定義及求法 (1)異面直線所成的角θ,0°<θ≤90° (2)直線與平面所成的角θ,0°≤θ≤90° (三垂線定理法:A∈α作或證AB⊥β于B,作BO⊥棱于O,連AO,則AO⊥棱l,∴∠AOB為所求。) 三類角的求法: ①找出或作出有關的角。 ②證明其符合定義,并指出所求作的角。 ③計算大?。ń庵苯侨切危蛴糜嘞叶ɡ恚?。 點與點,點與線,點與面,線與線,

4、線與面,面與面間距離。 將空間距離轉化為兩點的距離,構造三角形,解三角形求線段的長(如:三垂線定理法,或者用等積轉化法)。 如:正方形ABCD—A1B1C1D1中,棱長為a,則: (1)點C到面AB1C1的距離為___________; (2)點B到面ACB1的距離為____________; (3)直線A1D1到面AB1C1的距離為____________; (4)面AB1C與面A1DC1的距離為____________; (5)點B到直線A1C1的距離為_____________。 你是否準確理解正棱柱、正

5、棱錐的定義并掌握它們的性質? 正棱柱——底面為正多邊形的直棱柱 正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。 正棱錐的計算集中在四個直角三角形中: 它們各包含哪些元素? 球有哪些性質? (2)球面上兩點的距離是經(jīng)過這兩點的大圓的劣弧長。為此,要找球心角! (3)如圖,θ為緯度角,它是線面成角;α為經(jīng)度角,它是面面成角。 (5)球內接長方體的對角線是球的直徑。正四面體的外接球半徑R與內切球半徑r之比為R:r=3:1。 【典型例題】 1,

6、空間幾何體及三視圖 例1.用一些棱長為1cm的小正方體碼放成一個幾何體,圖1為其俯視圖,圖2為其主視圖則這個幾何體的體積最大是 7 cm3. 圖1(俯視圖) 圖2(主視圖) 例2.一個多面體的直觀圖及三視圖如圖所示,則多面體的體積為 ▲ . 例4.右圖是由一些相同的小正方體構成的幾何體的三視圖,這些相同的小正方體共有▲ 個.5 例5.如果一個幾何體的三視圖如圖所示(單位長度: cm), 則此幾何體的表面積是

7、。 主視圖 俯視圖 左視圖 2 俯視圖 主視圖 左視圖 2 1 2 例 6.矩形ABCD中,AB=4,BC=3,沿AC將矩形ABCD折成一個直二面角B-AC-D,則四面體ABCD的外接球的體積為 例7.一個幾何體的三視圖中,正視圖和側視圖都是矩形,俯視圖是等腰直角三角形(如圖),根據(jù)圖中標注的長度,可以計算出該幾何體的表面積是 12+4 . 2.平行與垂直 例8.已知:正方體,,E為棱的中點. ⑴求證:; ⑵求證:平面;⑶求三棱錐的體積 證明:連結,則//, ∵是正方形,∴.

8、 ∵面,∴. 又,∴面. ∵面,∴, ∴. ⑵證明:作的中點F,連結. ∵是的中點,∴, ∴四邊形是平行四邊形,∴ . ∵是的中點,∴, 又,∴. ∴四邊形是平行四邊形,//, ∵,, ∴平面面. 又平面,∴面 例A B C D E 9. 多面體中,,,,。 (1)求證:; (2)求證: 證明:(1)∵ ∴ (2)令中點為,中點為,連結、 ∵是的中位線 ∴ A B C D E M N 又∵ ∴ ∴

9、 ∴ ∵為正 ∴ ∴ 又∵, ∴四邊形為平行四邊形 ∴ ∴ 例10.如圖四邊形是菱形,平面, 為的中點. 求證: ⑴ ∥平面; B A C D P Q O ⑵ 平面平面. 解:證:設 ,連 ⑴ ∵為菱形, ∴ 為中點,又為中點。 ∴∥ 又 , ∴∥ ⑵ ∵為菱形, ∴, 又∵, ∴ 又 ∴ 又

10、 ∴ 3.距離與角 例11.已知所在的平面互相垂直,且AB=BC=BD,,求: ⑴.直線AD與平面BCD所成角的大??; ⑵.直線AD與直線BC所成角的大小; ⑶.二面角A-BD-C的余弦值. ⑴如圖,在平面ABC內,過A作AH⊥BC,垂足為H, 則AH⊥平面DBC,∴∠ADH即為直線AD與平面BCD所成的角 由題設知△AHB≌△AHD,則DH⊥BH,AH=DH,∴∠ADH=45° ⑵∵BC⊥DH,且DH為AD在平面BCD上的射影, ∴BC⊥AD,故AD與BC所成的角為90° ⑶過H作HR⊥BD,垂足為R,連結AR,則由三垂線定理知,AR⊥BD

11、,故∠ARH為二面角A—BD—C的平面角的補角 設BC=a,則由題設知,AH=DH=,在△HDB中,HR=a,∴tanARH==2 故二面角A—BD—C的余弦值的大小為 【點評】:本題著眼于讓學生掌握通性通法。幾何法在書寫上體現(xiàn):“作出來、證出來、指出來、算出來、答出來”五步。斜線和平面所成的角是一個直角三角形所成的銳角,它的三條邊分別是平面的垂線段、斜線段及斜線段在平面內的射影。因此求直線和平面所成的角,幾何法一般先定斜足、再作垂線找射影、通過解直角三角形求解;向量法則利用斜線和射影的夾角或考慮法向量,設 為直線與平面所成的角,為直線的方向向量與平面的法向量之間的夾角,則有或(如圖)

12、 特別地 時,,;時, ,或。 ⑴用兩面垂直的性質作垂線,找垂足的位置作出線面角,⑵利用三垂線定理證,⑶利用對稱性定義法作二面角 【變式與拓展】如圖,BCD是等腰直角三角形,斜邊CD的長等于點P到BC的距離,D是P在平面BCD上的射影. ⑴.求PB與平面BCD所成角; ⑵.求BP與平面PCD所成的角. 【解法】 ⑴. PD⊥平面BCD,∴BD是PB在平面BCD內的射影, ∴∠PBD為PB與平面BCD所成角,BD⊥BC, 由三垂線定理得BC⊥BD,∴BP=CD,設BC=a, 則B

13、D=a,BP=CD=a∴在Rt△BPD中, cos∠DBP= ∴∠DBP=45°, 即PB與平面BCD所成角為45°. ⑵.過B作BE⊥CD于E,連結PE,PD⊥平面BCD得PD⊥BE,∴BE⊥平面PCD, ∴∠BPE為BP與平面PCD所成的角,在Rt△BEP中,BE=a, BP=a,∴∠BPE=30° 即BP與平面PCD所成角為30° 例12.在四棱錐P-ABCD中,已知ABCD為矩形,PA ⊥平面ABCD,設PA=AB=a,BC=2a,求二面角B-PC-D的大小 B D P C A B D P C A 解

14、析一 E F B D P C A 解析三 E F G B D P C A 解析二 M N Q 解析1.定義法 過D作DE ⊥PC于E,過E作EF ⊥PC于F,連接FD,由二面角的平面角的定義可知是所求二面角B-PC-D的平面角。求解二面角B-PC-D的大小只需解△DEF即可 【解法一】過D作DE ⊥PC于E,過E作EF ⊥PC于F,連接FD,由二面角的平面角的定義可知是所求二面角B-PC-D的平面角 在四棱錐P-ABCD中, PA ⊥平面ABCD且ABCD為矩形,∵AD⊥DC∴PD⊥DC ∵PA=a,AD

15、=BC=2a,∴PD=,PC=,DE=,CE= 同理在Rt△PBC中,, 在Rt△EFC中,FC=, 在Rt△DFC中,DF=, 在△DEF中由余弦定理cos= 所求二面角B-PC-D的余弦值為 解析2.垂面法  易證面PAB⊥面PBC,過A作AM ⊥BP于M,顯然AM ⊥面PBC,從而有AM ⊥PC,同法可得AN ⊥PC,再由AM與AN相交與A得PC ⊥面AMN。設面AMN交PC于Q,則為二面角B-PC-D的平面角;再利用三面角公式可解 【解法二】略 解析3.利用三垂線求解  把四棱錐P-ABCD補成如圖的直三棱柱PAB-EDC,顯然二面角E-PC-D與二面角D-PC-B互補,

16、轉化為求二面角E-PC-D。 易證面PEDA ⊥PDC,過E作EF ⊥ PD于F,顯然PF ⊥面PDC,在面PCE內,過E作EG ⊥PC于G,連接GF,由三垂線得GF⊥ PC 即為二面角E-PC-D的平面角,只需解△EFG即可 B D P C A 解析四 E F 解析4.在面PDC內,分別過D、B作DE ⊥PC 于E, BF ⊥PC于F,連接EF即可。 利用平面知識求BF、EF、DE的長度, 再利用空間余弦定理求出q 即可 【點評】.用幾何法求二面角的方法比較多,常見的有: (1)定義法, 在棱上的點分別作棱的垂線,如解析1 (2)三垂線求

17、解 ,在棱上的點分別作棱的垂線,如解析2 (3)垂面法, 在棱上的點分別作棱的垂線,如解析3 用幾何法將二面角轉化為其平面角,要掌握以下三種基本做法:①直接利用定義,圖(1).②利用三垂線定理及其逆定理,圖 (2).最常用。③作棱的垂面,圖(3). A O B M N a b a b A O P A B O P a b (1) (2) (3) 4.空間幾何中的向量方法 例13. 如下圖,直棱柱ABC—A1B1C1的底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別是A1B1、A1A的中點. C1 A

18、1 B1 B C A (1)求BN的長; (2)求異面直線BA與1CB1的余弦值; (3)求證:A1B⊥C1M. 【解法】:∵AC⊥BC,CC1⊥面ABC, ∴可以建立如圖所示的坐標系 (1)依題意得B(0, 1,0),N(1,0,1), ∴||==. (2)A1(1,0,2),B(0,1,0),C(0,0,0),B1(0,1,2), ∴=(1,-1,2),=(0,1,2),·=3,||=,||=. ∴cos〈,〉==. 所以,異面直線BA與1CB1的余弦值為 (3)證明:C1(0,0,2),M(,,2), =(-1

19、,1,-2),=(,,0),∴·=0,∴A1B⊥C1M. 【點評】底面有直角的直棱柱適合建立坐標系的條件,可以用兩點間的距離公式,數(shù)量積的夾角公式,用坐標法求點點距、向量夾角。特別注意異面直線角的范圍(0,],而向量角的范圍為[0,π] S B C A 【變式與拓展】在三棱錐S—ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=,SB=. (1)求證:SC⊥BC; (2)求SC與AB所成角的余弦值. 【解法一】:如下圖,取A為原點,AB、AS分別為y、z軸建立空間直角坐標系,則有AC=2,BC=,SB=,得B(0,,0)、S(0,0,2)、C(2,,0

20、), =(2,,-2),=(-2,,0). (1)∵·=0,∴SC⊥BC. (2)設SC與AB所成的角為α,∵=(0,,0),·=4,||| |=4,∴cosα=,即為所求. 【解法二】:(1)∵SA⊥面ABC,AC⊥BC,AC是斜線SC在平面ABC內的射影,∴SC⊥BC. (2)如下圖,過點C作CD∥AB,過點A作AD∥BC交CD于點D,連結SD、SC,則∠SCD為異面直線SC與AB所成的角.∵四邊形ABCD是平行四邊形,CD=,SA=2,SD===5,∴在△SDC中,由余弦定理得cos∠SCD=,即為所求. 例14.如圖,在四棱錐中,底面ABCD是正方形,側棱底面ABC

21、D, ,E是PC的中點,作交PB于點F. (1)證明 平面; (2)證明平面EFD; (3)求二面角的大小. 【解法】:如圖所示建立空間直角坐標系,D為坐標原點.設 ⑴證明:連結AC,AC交BD于G.連結EG. 依題意得 底面ABCD是正方形, 是此正方形的中心, 故點G的坐標為且 . 這表明. 而平面EDB且平面EDB,平面EDB。 ⑵證明:依題意得。又 故 , 由已知,且所以平面EFD. (3)解:設點F的坐標為則 從而所以 由條件知,即 解得 點F的坐

22、標為 且 ,即, 故是二面角的平面角. ∵且 , 所以,二面角C—PC—D的大小為 【點評】考查空間向量數(shù)量積及其坐標表示,運用向量數(shù)量積判斷向量的共線與垂直,用向量證明線線、線面、面面的垂直與平行關系。 【變式與拓展】如圖,已知矩形ABCD所在平面外一點P,PA⊥平面ABCD, E、F分別是AB、 PC的中點. (1)求證:EF∥平面PAD; (2)求證:EF⊥CD; (3)若DPDA=45°,求EF與平面ABCD所成的角. 證明:如圖,建立空間直角坐標系A-xyz, 設AB=2a,BC=2b,PA=2c,則:A(0, 0, 0),

23、 B(2a, 0, 0),C(2a, 2b, 0),D(0, 2b, 0), P(0, 0, 2c)∵ E為AB的中點,F(xiàn)為PC的中點 ∴ E (a, 0, 0),F(xiàn) (a, b, c) (1)∵=(0, b, c),=(0, 0, 2c),=(0, 2b, 0) ∴=(+) ∴與、共面 又∵ E ? 平面PAD ∴ EF∥平面PAD. (2)∵ =(-2a, 0, 0 ) ∴·=(-2a, 0, 0)·(0, b, c)=0 ∴ CD⊥EF. (3)若DPDA=45°,則有2b=2c,即 b=c,∴ =(0, b, b), =(0, 0, 2b)

24、 ∴ cos á,?== ∴ á,?= 45° ∵ ⊥平面AC,∴ 是平面AC的法向量 ∴ EF與平面AC所成的角為:90°-á,?= 45°. 例15.如圖,在正四棱柱中,已知,、分別為、上的點,且 圖9 (Ⅰ)求證:平面; (Ⅱ)求點到平面的距離. 解:(Ⅰ)以為原點,以、、的正向分別為軸、軸、軸建立空間直角坐標系,則 于是 且 平面 (Ⅱ)由(Ⅰ)知,為平面的一個法向量, 向量在上的射影長即為到平面的距離,設為,于是 故點到平面的距離為 例16.如圖,在四棱錐P—ABCD中,底面ABCD為矩形,側棱PA⊥底面ABCD,AB=,BC=

25、1,PA=2,E為PD的中點. (Ⅰ)求直線AC與PB所成角的余弦值; P A B C D E (Ⅱ)在側面PAB內找一點N,使NE⊥面PAC, 并求出N點到AB和AP的距離. 解:方法一、(1)設AC∩BD=O,連OE,則OE//PB, ∴∠EOA即為AC與PB所成的角或其補角. 在△AOE中,AO=1,OE= ∴ 即AC與PB所成角的余弦值為. (2)在面ABCD內過D作AC的垂線交AB于F,則. 連PF,則在Rt△ADF中 設N為PF的中點,連NE,則NE//DF, ∵DF⊥AC,DF⊥PA,∴DF⊥面PAC,從而NE⊥面PAC. ∴N點到

26、AB的距離,N點到AP的距離 方法二、(Ⅰ)建立如圖所示的空間直角坐標系, 則A、B、C、D、P、E的坐標為A(0,0,0)、 B(,0,0)、C(,1,0)、D(0,1,0)、 P(0,0,2)、E(0,,1), 從而 設的夾角為θ,則 ∴AC與PB所成角的余弦值為. (Ⅱ)由于N點在側面PAB內,故可設N點坐標為(x,O,z),則,由NE⊥面PAC可得, ∴ 即N點的坐標為,從而N點到AB、AP的距離分別為1,. 【模擬演練】 一、選擇 1.已知正方體外接球的體積是,那么正方體的棱長為( ) A. B. C. D

27、. 2.一個幾何體的三視圖如圖所示,已知側視圖是一個等腰三角形, 根據(jù)圖中尺寸(單位:),可知這個幾何體的體積是( ) A. B. C. D. 4.已知、是不重合的直線,、、是兩兩不重合的平面,給出下列命題:①若則;②若,則;③若,;④若其中真命題的序號為 ( ) A ①② B ①③ C ①④ D ②④ 5. 在正三棱錐中,分別為、的中點,若與所成的角為,則與所成的角為( )  A.  B. C. D. 7.已知直三棱柱ABC-A1B1C1中,AC=B

28、C,M、N分別是A1B1,AB的中點,P點在線段上,則與平面的位置關系是 ( ) A.垂直 B.平行 C.相交但不垂直 D. 要依P點的位置而定 11. 如圖所示,設地球半徑為,點在赤道上,為地心,點在北緯30°的緯線(為其圓心)上,且點,,共面,點、、共線 若,則異面直線與所成角的正弦值為 ( ) A. B. C. D. 二、填空 13.已知一個正四棱柱內接于球,該正四棱柱高為3,體積為24,則這個球的表面積是

29、 。 14.若直線l與平面 所成角為,直線a在平面內,且與直線l異面,則直線l與直線a所成的角的取值范圍是 。 三解答題 17.(本題滿分12分) 如圖所示,在四棱錐中,底面為平行四邊形,,平面,點是的中點。 (1)求證:平面平面; (2)求證:。 18. (本小題滿分12分) 如圖所示,矩形中,G是對角線AC,BD的交點,, ,F(xiàn)為CE上的點,且,連接FG. ⑴求證:; ⑵求證://; ⑶求三棱錐的體積.

30、 19.如圖,四棱錐的底面為直角梯形, ABCD,?!? (Ⅰ)求證: (Ⅱ)求二面角的大小  專題訓練答案 1.B 解析:由正方體對角線得到直徑可知,,所以棱長為。 2.A 解析:由三視圖可知該幾何體的底面是底邊為6,高是4的等腰三角形,該幾何體的高為5,所以。 4.D解析:①只有、相交才正確,所以①錯誤;②正確;③l還需與、的交線垂直,錯誤;④由平面與平面平行的性質定理可知正確,選D. 5.C 解析:由正三棱錐的對應棱互相垂直,得。取的中點,連,則,所以△是直角三角形,與所成的角為,就是∠=,從而∠=,即與所成的角為,故選C。 7.

31、B 解析:由題設知B1M∥AN且B1M=AN,四邊形ANB1M是平行四邊形, 故B1N∥AM,B1N∥AMC1平面.又C1M∥CN,得CN∥平面AMC1,則平面B1NC∥AMC1,平面AMC1,∴∥平面B1NC。 11.C 解析:分別以所在直線為x軸、y軸、z軸建立空間直角坐標系,易得A(0,R,0),B(R,0,0),C(0,,D(0,0,R),所以, 故選C。 13. 解析:正四棱柱高為3,體積為24,底面積為8,正方形邊長為2,正四棱柱的對角線長即球的直徑為5,∴ 球的半徑為,球的表面積是。 14.;解析:因為直線l是平面的斜線,斜線與平面所成的角

32、,是這條斜線和這個平面內的直線所成的一切角中最小的角,故a與l所成的角大于或等于;又因為異面直線所成的角不大于. 17、證明:(1)平面,平面,。 2分 又,平面,平面, 平面,平面,平面平面。 6分 (2)連結交于點,并連結,四邊形為平行四邊形 ∴為的中點, 又為的中點。 8分 ∴在中為中位線, ,平面, 平面,,。 12分 18、解:(1)證明:∵, ∴,

33、∴, 2分 又∵,∴ , 4分 又∵ ∴.,,。 5分 ⑵證明:∵,∴,又 ∴是的中點,又易知是的中點, ∴在△中,,又, ∴. 9分 ⑶由⑵知且, . ∴∴, 又∵,∴,∴在中,。 ∴在, ∴在。 12分 解析:(Ⅰ)如圖,建立坐標系, 則,,,,, ,,, ,  2分 ,,又,平面  6分 (Ⅱ)設平面的法向量為, 則,, 又,, 解得 。 8分 平面的法向量取為, ,?!? 二面角的大小為。  12分

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!