大學(xué)物理機(jī)械工業(yè)出版社上冊(cè)課后練習(xí)答案.doc
《大學(xué)物理機(jī)械工業(yè)出版社上冊(cè)課后練習(xí)答案.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《大學(xué)物理機(jī)械工業(yè)出版社上冊(cè)課后練習(xí)答案.doc(44頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、第一章 質(zhì)點(diǎn)的運(yùn)動(dòng)1-1已知質(zhì)點(diǎn)的運(yùn)動(dòng)方程為:,。式中x、y的單位為m,t的單位為。試求:(1) 初速度的大小和方向;(2) 加速度的大小和方向。分析由運(yùn)動(dòng)方程的分量式可分別求出速度、加速度的分量,再由運(yùn)動(dòng)合成算出速度和加速度的大小和方向解(1) 速度的分量式為 當(dāng)t 0 時(shí), vox -10 m-1 , voy 15 m-1 ,則初速度大小為設(shè)vo與x 軸的夾角為,則12341(2) 加速度的分量式為 , 則加速度的大小為設(shè)a 與x 軸的夾角為,則-3341(或32619)1-2 一石子從空中由靜止下落,由于空氣阻力,石子并非作自由落體運(yùn)動(dòng)。現(xiàn)測(cè)得其加速度aA-Bv,式中A、B 為正恒量,求
2、石子下落的速度和運(yùn)動(dòng)方程。分析本題亦屬于運(yùn)動(dòng)學(xué)第二類問題,與上題不同之處在于加速度是速度v的函數(shù),因此,需將式dv a(v)dt 分離變量為后再兩邊積分解選取石子下落方向?yàn)閥 軸正向,下落起點(diǎn)為坐標(biāo)原點(diǎn)(1) 由題 (1)用分離變量法把式(1)改寫為 (2)將式(2)兩邊積分并考慮初始條件,有得石子速度 由此可知當(dāng),t時(shí),為一常量,通常稱為極限速度或收尾速度(2) 再由并考慮初始條件有得石子運(yùn)動(dòng)方程1-3 一個(gè)正在沿直線行駛的汽船,關(guān)閉發(fā)動(dòng)機(jī)后,由于阻力得到一個(gè)與速度反向、大小與船速平方成正比例的加速度,即a= - kv2,k為常數(shù)。在關(guān)閉發(fā)動(dòng)機(jī)后,試證:(1)船在t時(shí)刻的速度大小為 ;(2)
3、在時(shí)間t內(nèi),船行駛的距離為 ;(3)船在行駛距離x時(shí)的速率為v=v0e-kx。證明(1)分離變數(shù)得, 故 ,可得: (2)公式可化為,由于v = dx/dt,所以:積分 因此 (3 ) 要求 v( x),可由 ,有積分得證畢Hhv0圖1-18 習(xí)題1-4圖14行人身高為h,若人以勻速v0用繩拉一小車行走,而小車放在距地面高為H的光滑平臺(tái)上,求小車移動(dòng)的速度和加速度。解:人前進(jìn)的速度v0,則繩子前進(jìn)的速度大小等于車移動(dòng)的速度大小,所以小車移動(dòng)的速度小車移動(dòng)的加速度1-5 質(zhì)點(diǎn)沿軸運(yùn)動(dòng),其加速度和位置的關(guān)系為 ,a 的單位為 m/s2,x 的單位為 m。質(zhì)點(diǎn)在x=0處,速度為10m/s,試求質(zhì)點(diǎn)在
4、任何坐標(biāo)處的速度值。解: 分離變量: 兩邊積分得 由題知,時(shí),, 1-6 如圖所示,一彈性球由靜止開始自由下落高度 h 后落在一傾角的斜面上,與斜面發(fā)生完全彈性碰撞后作拋射體運(yùn)動(dòng),問它第二次碰到斜面的位置距原來(lái)的下落點(diǎn)多遠(yuǎn)。解:小球落地時(shí)速度為 建立直角坐標(biāo)系,以小球第一次落地點(diǎn)為坐標(biāo)原點(diǎn)如圖 (1) (2)第二次落地時(shí) 所以 17一人扔石頭的最大出手速率為v25m/s,他能擊中一個(gè)與他的手水平距離L=50m,高h(yuǎn)=13m的目標(biāo)嗎?在此距離上他能擊中的最大高度是多少?解:由運(yùn)動(dòng)方程,消去t得軌跡方程以x05.0m ,v25ms1代入后得取g10.0,則當(dāng)時(shí),13所以他不能射中,能射中得最大高度
5、為1-8 一質(zhì)點(diǎn)沿半徑為R 的圓周按規(guī)律運(yùn)動(dòng),v0 、b 都是常量。(1) 求t 時(shí)刻質(zhì)點(diǎn)的總加速度;(2) t 為何值時(shí)總加速度在數(shù)值上等于b?(3) 當(dāng)加速度達(dá)到b 時(shí),質(zhì)點(diǎn)已沿圓周運(yùn)行了多少圈?分析在自然坐標(biāo)中,s 表示圓周上從某一點(diǎn)開始的曲線坐標(biāo)由給定的運(yùn)動(dòng)方程s s(t),對(duì)時(shí)間t 求一階、二階導(dǎo)數(shù),即是沿曲線運(yùn)動(dòng)的速度v 和加速度的切向分量a,而加速度的法向分量為anv2 /R這樣,總加速度為a aeanen至于質(zhì)點(diǎn)在t 時(shí)間內(nèi)通過的路程,即為曲線坐標(biāo)的改變量sst -s0因圓周長(zhǎng)為2R,質(zhì)點(diǎn)所轉(zhuǎn)過的圈數(shù)自然可求得解(1) 質(zhì)點(diǎn)作圓周運(yùn)動(dòng)的速率為其加速度的切向分量和法向分量分別為,
6、 故加速度的大小為其方向與切線之間的夾角為(2) 要使ab,由可得(3) 從t0 開始到tv0 /b 時(shí),質(zhì)點(diǎn)經(jīng)過的路程為因此質(zhì)點(diǎn)運(yùn)行的圈數(shù)為1-9 已知質(zhì)點(diǎn)的運(yùn)動(dòng)方程為:,式中為正的常量。求:(1)質(zhì)點(diǎn)運(yùn)動(dòng)的軌道方程;(2)質(zhì)點(diǎn)的速度大??;(3)質(zhì)點(diǎn)的加速度大小。解: (1)軌道方程為 這是一條空間螺旋線。在O平面上的投影為圓心在原點(diǎn),半徑為R的圓,螺距為h(2) (3) , 110飛機(jī)以100ms-1的速度沿水平直線飛行,在離地面高為100m時(shí),駕駛員要把物品投到前方某一地面目標(biāo)處。問:(1)此時(shí)目標(biāo)在飛機(jī)下方前多遠(yuǎn)?(2)投放物品時(shí),駕駛員看目標(biāo)的視線和水平線成何角度?(3)物品投出2s
7、后,它的法向加速度和切向加速度各為多少?解:(1)(2) (3) 111一無(wú)風(fēng)的下雨天,一列火車以v1=20m/s的速度勻速前進(jìn),在車內(nèi)的旅客看見玻璃窗外的雨滴和垂線成75角下降,求雨滴下落的速度v2。(設(shè)下降的雨滴作勻速運(yùn)動(dòng))解:以地面為參考系,火車相對(duì)地面運(yùn)動(dòng)的速度為V1,雨滴相對(duì)地面豎直下落的速度為V2,旅客看到雨滴下落速度V2為相對(duì)速度,它們之間的關(guān)系為112升降機(jī)以加速度a0=1.22ms-2上升,當(dāng)上升速度為2.44ms-1時(shí),有一螺帽自升降機(jī)的天花板脫落,天花板與升降機(jī)的底面相距2.74m,試求:(1)螺帽從天花板落到底面所需時(shí)間;(2)螺帽相對(duì)于升降機(jī)外固定柱子的下降距離。解:
8、(1)以升降機(jī)為參考系,此時(shí),螺絲相對(duì)它的加速度為a=g+a,螺絲落到底面時(shí),有 (2)由于升降機(jī)在t時(shí)間內(nèi)的高度為則113飛機(jī)A相對(duì)地面以vA =1000km/h的速率向南飛行,另一飛機(jī)B相對(duì)地面以vB =800 km/h的速率向東偏南30方向飛行。求飛機(jī)A相對(duì)飛機(jī)B的速度。解:114 一人能在靜水中以1.10ms-1的速度劃船前進(jìn),今欲橫渡一寬為1000m、水流速度為0.55ms1的大河。(1),那么應(yīng)如何確定劃行方向?到達(dá)正對(duì)岸需多少時(shí)間?(2)如果希望用最短的時(shí)間過河,應(yīng)如何確定劃行方向?船到達(dá)對(duì)岸的位置在什么地方?解:如圖(1)若要從出發(fā)點(diǎn)橫渡該河而到達(dá)正對(duì)岸的一點(diǎn),則劃行速度和水流
9、速度u的合速度的方向正對(duì)著岸,設(shè)劃行速度合速度的夾角為如圖(2)用最短的時(shí)間過河,則劃行速度的方向正對(duì)著岸115設(shè)有一架飛機(jī)從A處向東飛到B處,然后又向西飛回到A處,飛機(jī)相對(duì)空氣的速率為,而空氣相對(duì)地面的速率為u,A、B間的距離為l。(1)假定空氣是靜止的(即u=0),求飛機(jī)來(lái)回飛行的時(shí)間;(2)假定空氣的速度向東,求飛機(jī)來(lái)回飛行的時(shí)間;(3)假定空氣的速度向北,求飛機(jī)來(lái)回飛行的時(shí)間。解:由相對(duì)速度的矢量關(guān)系有(1)空氣時(shí)靜止的,即u0,則往返時(shí),飛機(jī)相對(duì)地面的飛行速度就等于飛機(jī)相對(duì)空氣的速度v(圖(1),故飛機(jī)來(lái)回飛行的時(shí)間(2) 空氣的速度向東時(shí),當(dāng)飛機(jī)向東飛行時(shí),風(fēng)速與飛機(jī)相對(duì)空氣的速度
10、同向;返回時(shí),兩者剛好相反(圖(2),故飛機(jī)來(lái)回飛行的時(shí)間為(3) 空氣的速度向北時(shí),飛機(jī)相對(duì)地面的飛行速度的大小由可得為,故飛機(jī)來(lái)回飛行的時(shí)間為vuv(1)(2)vu第二章 質(zhì)點(diǎn)動(dòng)力學(xué)AB習(xí)題2-1圖aAmgTATBaBmg21如本題圖,A、B兩物體質(zhì)量均為m,用質(zhì)量不計(jì)的滑輪和細(xì)繩連接,并不計(jì)摩擦,則A和B的加速度大小各為多少 。解:如圖由受力分析得習(xí)題22圖22如本題圖所示,已知兩物體A、B的質(zhì)量均為m=3.0kg,物體A以加速度a=1.0m/s2 運(yùn)動(dòng),求物體B與桌面間的摩擦力。(滑輪與連接繩的質(zhì)量不計(jì))解:分別對(duì)物體和滑輪受力分析(如圖),由牛頓定律和動(dòng)力學(xué)方程得,2-3 如圖所示,
11、細(xì)線不可伸長(zhǎng),細(xì)線、定滑輪、動(dòng)滑輪的質(zhì)量均不計(jì)已知。求各物體運(yùn)動(dòng)的加速度及各段細(xì)線中的張力。習(xí)題2-3 圖解:設(shè)m1下落的加速度為a1,因而動(dòng)滑輪也以a1上升。再設(shè)m2相對(duì)動(dòng)滑輪以加速度a下落,m3相對(duì)動(dòng)滑輪以加速度a上升,二者相對(duì)地面的加速度分別為:(下落)和(上升),設(shè)作用在m1上的線中張力為T1,作用在m2和m3上的線中張力為T2。列出方程組如下:代入,可求出:,24光滑的水平面上放置一半徑為R的固定圓環(huán),物體緊貼環(huán)的內(nèi)側(cè)作圓周運(yùn)動(dòng),其摩擦系數(shù)為。物體的初速率為v0,求:(1)t時(shí)刻物體的速率;(2)當(dāng)物體速率從v0減少到v0/2時(shí),物體所經(jīng)歷的時(shí)間及經(jīng)過的路程。解:(1)設(shè)物體質(zhì)量為m
12、,取圖示的自然坐標(biāo)系,由牛頓定律得,(2) 當(dāng)物體速率從v0減少到v0/2時(shí),由可得物體所經(jīng)歷的時(shí)間經(jīng)過的路程25從實(shí)驗(yàn)知道,當(dāng)物體速度不太大時(shí),可以認(rèn)為空氣的阻力正比于物體的瞬時(shí)速度,設(shè)其比例常數(shù)為k。將質(zhì)量為m的物體以豎直向上的初速度v0拋出。(1)試證明物體的速度為(2)證明物體將達(dá)到的最大高度為(3)證明到達(dá)最大高度的時(shí)間為證明:由牛頓定律可得26 質(zhì)量為m的跳水運(yùn)動(dòng)員,從距水面距離為h的高臺(tái)上由靜止跳下落入水中。把跳水運(yùn)動(dòng)員視為質(zhì)點(diǎn),并略去空氣阻力。運(yùn)動(dòng)員入水后垂直下沉,水對(duì)其阻力為bv2,其中b為一常量。若以水面上一點(diǎn)為坐標(biāo)原點(diǎn)O,豎直向下為Oy軸,求:(1)運(yùn)動(dòng)員在水中的速率v與
13、y的函數(shù)關(guān)系;(2)跳水運(yùn)動(dòng)員在水中下沉多少距離才能使其速率v減少到落水速率v0的1/10?(假定跳水運(yùn)動(dòng)員在水中的浮力與所受的重力大小恰好相等)解:運(yùn)動(dòng)員入水可視為自由落體運(yùn)動(dòng),所以入水時(shí)的速度為,入水后如圖由牛頓定律的yfkvmgv 27一物體自地球表面以速率v0豎直上拋。假定空氣對(duì)物體阻力的值為fkmv2,其中k為常量,m為物體質(zhì)量。試求:(1)該物體能上升的高度;(2)物體返回地面時(shí)速度的值。解:分別對(duì)物體上拋和下落時(shí)作受力分析(如圖),2-8 質(zhì)量為的子彈以速度v0水平射入沙土中,設(shè)子彈所受阻力f = - kv,為常數(shù),求:(1) 子彈射入沙土后,速度隨時(shí)間變化的函數(shù)式;(2) 子彈
14、進(jìn)入沙土的最大深度。解:(1)由題意和牛頓第二定律可得:,分離變量,可得: 兩邊同時(shí)積分,所以:(2)子彈進(jìn)入沙土的最大深度也就是v=0的時(shí)候子彈的位移,則:由 可推出:,而這個(gè)式子兩邊積分就可以得到位移: 。2-9 已知一質(zhì)量為的質(zhì)點(diǎn)在軸上運(yùn)動(dòng),質(zhì)點(diǎn)只受到指向原點(diǎn)的力,是比例常數(shù)。設(shè)質(zhì)點(diǎn)在時(shí)的速度為零,求質(zhì)點(diǎn)在處的速度的大小。解:由題意和牛頓第二定律可得:再采取分離變量法可得: ,兩邊同時(shí)取積分,則:所以:2-10 一顆子彈在槍筒里前進(jìn)時(shí)所受的合力大小為,子彈從槍口射出時(shí)的速率為。設(shè)子彈離開槍口處合力剛好為零。求:(1)子彈走完槍筒全長(zhǎng)所用的時(shí)間;(2)子彈在槍筒中所受力的沖量;(3)子彈的
15、質(zhì)量。解:(1)由和子彈離開槍口處合力剛好為零,則可以得到: 算出t=0.003s。(2)由沖量定義:(3)由動(dòng)量定理:2-11 高空作業(yè)時(shí)系安全帶是非常必要的。假如一質(zhì)量為51.0 kg 的人,在操作時(shí)不慎從高空豎直跌落下來(lái),由于安全帶的保護(hù),最終使他被懸掛起來(lái)。已知此時(shí)人離原處的距離為2.0 m ,安全帶彈性緩沖作用時(shí)間為0.50 s。求安全帶對(duì)人的平均沖力。分析從人受力的情況來(lái)看,可分兩個(gè)階段:在開始下落的過程中,只受重力作用,人體可看成是作自由落體運(yùn)動(dòng);在安全帶保護(hù)的緩沖過程中,則人體同時(shí)受重力和安全帶沖力的作用,其合力是一變力,且作用時(shí)間很短為求安全帶的沖力,可以從緩沖時(shí)間內(nèi),人體運(yùn)
16、動(dòng)狀態(tài)(動(dòng)量)的改變來(lái)分析,即運(yùn)用動(dòng)量定理來(lái)討論事實(shí)上,動(dòng)量定理也可應(yīng)用于整個(gè)過程但是,這時(shí)必須分清重力和安全帶沖力作用的時(shí)間是不同的;而在過程的初態(tài)和末態(tài),人體的速度均為零這樣,運(yùn)用動(dòng)量定理仍可得到相同的結(jié)果解以人為研究對(duì)象,按分析中的兩個(gè)階段進(jìn)行討論在自由落體運(yùn)動(dòng)過程中,人跌落至2 m 處時(shí)的速度為 (1)在緩沖過程中,人受重力和安全帶沖力的作用,根據(jù)動(dòng)量定理,有 (2)由式(1)、(2)可得安全帶對(duì)人的平均沖力大小為212長(zhǎng)為60cm的繩子懸掛在天花板上,下方系一質(zhì)量為1kg的小球,已知繩子能承受的最大張力為20N。試求要多大的水平?jīng)_量作用在原來(lái)靜止的小球上才能將繩子打斷?解:由動(dòng)量定理
17、得,如圖受力分析并由牛頓定律得,213一作斜拋運(yùn)動(dòng)的物體,在最高點(diǎn)炸裂為質(zhì)量相等的兩塊,最高點(diǎn)距離地面為19.6m。爆炸1.0s后,第一塊落到爆炸點(diǎn)正下方的地面上,此處距拋出點(diǎn)的水平距離為100m。問第二塊落在距拋出點(diǎn)多遠(yuǎn)的地面上?(設(shè)空氣的阻力不計(jì))解:取如圖示坐標(biāo)系,根據(jù)拋體運(yùn)動(dòng)規(guī)律,爆炸前,物體在最高點(diǎn)得速度得水平分量為214質(zhì)量為M的人手里拿著一個(gè)質(zhì)量為m的物體,此人用與水平面成角的速率v0向前跳去。當(dāng)他達(dá)到最高點(diǎn)時(shí),他將物體以相對(duì)于人為u的水平速率向后拋出。問:由于人拋出物體,他跳躍的距離增加了多少?(假設(shè)人可視為質(zhì)點(diǎn))(自己算一遍)解:取如圖所示坐標(biāo),把人和物視為一系統(tǒng),當(dāng)人跳躍到
18、最高點(diǎn)處,在向左拋物得過程中,滿足動(dòng)量守恒,故有215鐵路上有一靜止的平板車,其質(zhì)量為M,設(shè)平板車可無(wú)摩擦地在水平軌道上運(yùn)動(dòng)?,F(xiàn)有N個(gè)人從平板車的后端跳下,每個(gè)人的質(zhì)量均為m,相對(duì)平板車的速度均為u。問:在下列兩種情況下,(1)N個(gè)人同時(shí)跳離;(2)一個(gè)人、一個(gè)人地跳離,平板車的末速是多少?所得的結(jié)果為何不同,其物理原因是什么?(典型)解:取平板車及N個(gè)人組成的系統(tǒng),以地面為參考系,平板車的運(yùn)動(dòng)方向?yàn)檎较颍到y(tǒng)在該方向上滿足動(dòng)量守恒??紤]N個(gè)人同時(shí)跳車的情況,設(shè)跳車后平板車的速度為v,則由動(dòng)量守恒定律得0Mv+Nm(vu)vNmu/(Nm+M) (1)又考慮N個(gè)人一個(gè)接一個(gè)的跳車的情況。設(shè)當(dāng)
19、平板車上商有n個(gè)人時(shí)的速度為vn,跳下一個(gè)人后的車速為vn1,在該次跳車的過程中,根據(jù)動(dòng)量守恒有(M+nm)vn=M vn1+(n-1)m vn1+m(vn1-u) (2)由式(2)得遞推公式vn1=vn+mu/(M+nm) (3)當(dāng)車上有N個(gè)人得時(shí)(即Nn),vN0;當(dāng)車上N個(gè)人完全跳完時(shí),車速為v0,根據(jù)式(3)有,vN-1=0+mu/(Nm+M)vN-2= vN-1+mu/(N-1)m+M).v0= v1+mu/(M+nm)將上述各等式的兩側(cè)分別相加,整理后得,2-16 一物體在介質(zhì)中按規(guī)律x ct3 作直線運(yùn)動(dòng),c為一常量。設(shè)介質(zhì)對(duì)物體的阻力正比于速度的平方:,試求物體由x0 0 運(yùn)動(dòng)
20、到x l 時(shí),阻力所作的功。分析本題是一維變力作功問題,仍需按功的定義式來(lái)求解關(guān)鍵在于尋找力函數(shù)F F(x)根據(jù)運(yùn)動(dòng)學(xué)關(guān)系,可將已知力與速度的函數(shù)關(guān)系F(v) kv2 變換到F(t),進(jìn)一步按x ct3 的關(guān)系把F(t)轉(zhuǎn)換為F(x),這樣,就可按功的定義式求解解由運(yùn)動(dòng)學(xué)方程x ct3 ,可得物體的速度按題意及上述關(guān)系,物體所受阻力的大小為則阻力的功為217一人從10m深的井中提水,起始桶中裝有10kg的水,由于水桶漏水,每升高1m要漏去0.2kg的水。求水桶被勻速地從井中提到井口,人所作的功。(典型)解:水桶在勻速上提的過程中,加速度為0,拉力和重力平衡,在圖示坐標(biāo)下,水桶重力隨位置的變化關(guān)
21、系為Gmggy其中0.2kg/m,人對(duì)水桶的拉力的功為218如本題圖所示,A和B兩塊板用一輕彈簧連接起來(lái),它們的質(zhì)量分別為m1和m2。問在A板上需加多大的壓力,方可在力停止作用后,恰能使在跳起來(lái)時(shí)B稍被提起。(設(shè)彈簧的勁度系數(shù)為k)解:選取如圖所示坐標(biāo)系,取原點(diǎn)處為重力勢(shì)能和彈性勢(shì)能零點(diǎn),作各種狀態(tài)下物體的受力圖。對(duì)A板而言,當(dāng)施以外力F時(shí),根據(jù)受力平衡有習(xí)題218圖219如本題圖所示,質(zhì)量為m、速度為v的鋼球,射向質(zhì)量為M的靶,靶中心有一小孔,內(nèi)有勁度系數(shù)為k的彈簧,此靶最初處于靜止?fàn)顟B(tài),但可在水平面上作無(wú)摩擦滑動(dòng),求子彈射入靶內(nèi)彈簧后,彈簧的最大壓縮距離。解:設(shè)彈簧得最大壓縮量為x0。小球
22、與靶共同運(yùn)動(dòng)得速度為v1。由動(dòng)量守恒定律,有習(xí)題219圖習(xí)題220圖220以質(zhì)量為m的彈丸,穿過如本題圖所示的擺錘后,速率由v減少到v/2。已知擺錘的質(zhì)量為M,擺線長(zhǎng)度為l,如果擺錘能在垂直平面內(nèi)完成一個(gè)完全的圓周運(yùn)動(dòng),彈丸的速度的最小值應(yīng)為多少?解:221如本題圖所示,一質(zhì)量為M的物塊放置在斜面的最底端A處,斜面的傾角為,高度為h,物塊與斜面的滑動(dòng)摩擦因數(shù)為,今有一質(zhì)量為m的子彈以速度v0 沿水平方向射入物塊并留在其中,且使物塊沿斜面向上滑動(dòng),求物塊滑出頂端時(shí)的速度大小。解:圖2-40 習(xí)題2-22 圖2-22 如圖2-40所示,在光滑水平面上,平放一輕彈簧,彈簧一端固定,另一端連著物體、,
23、它們質(zhì)量分別為和,彈簧勁度系數(shù)為,原長(zhǎng)為。用力推,使彈簧壓縮,然后釋放。求:(1)當(dāng)與開始分離時(shí),它們的位置和速度;(2)分離之后,還能往前移動(dòng)多遠(yuǎn)?解:(1)當(dāng)A和B開始分離時(shí),兩者具有相同的速度,根據(jù)能量守恒,可得到:,所以:; (2)分離之后,A的動(dòng)能又將逐漸的轉(zhuǎn)化為彈性勢(shì)能,所以: ,則: 圖2-41 習(xí)題2-23 圖2-23 如圖2-41所示,光滑斜面與水平面的夾角為a=30,輕質(zhì)彈簧上端固定。今在彈簧的另一端輕輕地掛上質(zhì)量為M= 1.0kg的木塊,木塊沿斜面從靜止開始向下滑動(dòng)。當(dāng)木塊向下滑x=30cm時(shí),恰好有一質(zhì)量m=0.01kg的子彈,沿水平方向以速度射中木塊并陷在其中。設(shè)彈簧
24、的勁度系數(shù)為。求子彈打入木塊后它們的共同速度。解:由機(jī)械能守恒條件可得到碰撞前木快的速度,碰撞過程中子彈和木快沿斜面方向動(dòng)量守恒,(瞬間)可得: (碰撞前木快的速度) 習(xí)題221圖224 二質(zhì)量相同的小球,一個(gè)靜止,另一個(gè)以速度0與靜止的小球作對(duì)心碰撞,求碰撞后兩球的速度。(1)假設(shè)碰撞是完全非彈性的;(2)假設(shè)碰撞是完全彈性的;(3)假設(shè)碰撞的恢復(fù)系數(shù)。解:由碰撞過程動(dòng)量守恒以及附加條件,可得(1)假設(shè)碰撞是完全非彈性的,即兩者將以共同的速度前行:所以:(2)假設(shè)碰撞是完全彈性的,兩球交換速度, (3)假設(shè)碰撞的恢復(fù)系數(shù),也就是所以: , 習(xí)題225圖225如本題圖所示,一質(zhì)量為m的鋼球,系
25、在一長(zhǎng)為l的繩一端,繩另一端固定,現(xiàn)將球由水平位置靜止下擺,當(dāng)球到達(dá)最低點(diǎn)時(shí)與質(zhì)量為M,靜止于水平面上的鋼塊發(fā)生彈性碰撞,求碰撞后m和M的速率。圖2-43 習(xí)題2-26 圖2-26 如圖2-43所示,兩個(gè)質(zhì)量分別為m1和m2的木塊A、B,用一勁度系數(shù)為k的輕彈簧連接,放在光滑的水平面上。A緊靠墻。今用力推B塊,使彈簧壓縮x0然后釋放。(已知)求:(1)釋放后兩滑塊速度相等時(shí)的速度大??;(2)彈簧的最大伸長(zhǎng)量。解:分析題意,可知在彈簧由壓縮狀態(tài)回到原長(zhǎng)時(shí),是彈簧的彈性勢(shì)能轉(zhuǎn)換為B木塊的動(dòng)能,然后B帶動(dòng)A一起運(yùn)動(dòng),此時(shí)動(dòng)量守恒,可得到兩者相同的速度v ,并且此時(shí)就是彈簧伸長(zhǎng)最大的位置,由機(jī)械能守恒
26、可算出其量值。所以(2)那么計(jì)算可得:227如本題圖示,繩上掛有質(zhì)量相等的兩個(gè)小球,兩球碰撞時(shí)的恢復(fù)系數(shù)e=0.5。球A由靜止?fàn)顟B(tài)釋放,撞擊球B,剛好使球B到達(dá)繩成水平的位置,求證球A釋放前的張角q 應(yīng)滿足cosq = 1/9。B q2L習(xí)題227圖ABCL證明:設(shè)球A到達(dá)最低點(diǎn)的速率為v,根據(jù)機(jī)械能守恒有圖2-45 習(xí)題2-28 圖2-28 如圖2-45所示,一質(zhì)量為m,半徑為R的球殼,靜止在光滑水平面上,在球殼內(nèi)有另一質(zhì)量也為m,半徑為r的小球,初始時(shí)小球靜止在圖示水平位置上。放手后小球沿大球殼內(nèi)往下滾,同時(shí)大球殼也會(huì)在水平面上運(yùn)動(dòng)。當(dāng)它們?cè)俅戊o止在水平面上時(shí),問大球殼在水平面上相對(duì)初始時(shí)
27、刻的位移大小是多少?解:系統(tǒng)在水平方向上不受外力,因而系統(tǒng)質(zhì)心的水平位置始終不變。如圖所示,初始時(shí),系統(tǒng)的質(zhì)心到球心O的距離為(從質(zhì)心公式算)小球最終將靜止于大球殼的最下方,而系統(tǒng)質(zhì)心的水平位置始終不變,因而大球殼在水平面上相對(duì)初始時(shí)刻的位移大小(另外從質(zhì)心公式算)圖2-46 習(xí)題2-29 圖2-29 如圖2-46所示,從坐標(biāo)原點(diǎn)以v0的初速度發(fā)射一發(fā)炮彈,發(fā)射傾角q = 45。當(dāng)炮彈到達(dá) 處時(shí),突然爆炸分成質(zhì)量相同的兩塊,其中一塊豎直下落,求另一塊落地時(shí)的位置x2是多少?解:炮彈爆炸后其質(zhì)心仍按原拋物線軌道運(yùn)動(dòng),因而落地后的質(zhì)心坐標(biāo)為由式,且 ,有第三章 剛體力學(xué)31一通風(fēng)機(jī)的轉(zhuǎn)動(dòng)部分以初角
28、速度0繞其軸轉(zhuǎn)動(dòng),空氣的阻力矩與角速度成正比,比例系數(shù)C為一常量。若轉(zhuǎn)動(dòng)部分對(duì)其軸的轉(zhuǎn)動(dòng)慣量為J,問:(1)經(jīng)過多少時(shí)間后其轉(zhuǎn)動(dòng)角速度減少為初角速度的一半?(2)在此時(shí)間內(nèi)共轉(zhuǎn)過多少轉(zhuǎn)?解:(1)由題可知:阻力矩,又因?yàn)檗D(zhuǎn)動(dòng)定理 當(dāng)時(shí),。圖3-28 習(xí)題3-3圖(2)角位移, 所以,此時(shí)間內(nèi)轉(zhuǎn)過的圈數(shù)為。32質(zhì)量面密度為的均勻矩形板,試證其對(duì)與板面垂直的,通過幾何中心的軸線的轉(zhuǎn)動(dòng)慣量為。其中a,b為矩形板的長(zhǎng),寬。 證明一:如圖,在板上取一質(zhì)元,對(duì)與板面垂直的、通過幾何中心的軸線的轉(zhuǎn)動(dòng)慣量為 證明二:如圖,在板上取一細(xì)棒,對(duì)通過細(xì)棒中心與棒垂直的轉(zhuǎn)動(dòng)軸的轉(zhuǎn)動(dòng)慣量為,根據(jù)平行軸定理,對(duì)與板面垂直
29、的、通過幾何中心的軸線的轉(zhuǎn)動(dòng)慣量為 T(這道題以右邊為坐標(biāo)原點(diǎn),左為正方向)3-3 如圖3-28所示,一輕繩跨過兩個(gè)質(zhì)量為、半徑為的均勻圓盤狀定滑輪,繩的兩端分別掛著質(zhì)量為和的重物,繩與滑輪間無(wú)相對(duì)滑動(dòng),滑輪軸光滑,求重物的加速度和各段繩中的張力。(現(xiàn)在滑輪質(zhì)量要計(jì),所以繩子拉力會(huì)不等)解:受力分析如圖 (1)(2)(3)(4)(對(duì)于質(zhì)量非常小的物體,轉(zhuǎn)動(dòng)慣量為零,才有可能T=T1), (5)聯(lián)立求出,圖3-29 習(xí)題3-4圖3-4 如圖3-29所示,一均勻細(xì)桿長(zhǎng)為L(zhǎng),質(zhì)量為,平放在摩擦系數(shù)為的水平桌面上,設(shè)開始時(shí)桿以角速度繞過細(xì)桿中心的豎直軸轉(zhuǎn)動(dòng),試求:(1)作用于桿的摩擦力矩;(2)經(jīng)過多
30、長(zhǎng)時(shí)間桿才會(huì)停止轉(zhuǎn)動(dòng)。(1) 解:設(shè)桿的線,在桿上取一小質(zhì)元考慮對(duì)稱(2) 根據(jù)轉(zhuǎn)動(dòng)定律所以35質(zhì)量為m1和m2的兩物體A、B分別懸掛在如本題圖所示的組合輪兩端。設(shè)兩輪的半徑分別為R和r,兩輪的轉(zhuǎn)動(dòng)慣量分別為J1和J2,輪與軸承間的摩擦力略去不計(jì),繩的質(zhì)量也略去不計(jì)。試求兩物體的加速度和繩中的張力。解:分別對(duì)兩物體做如圖的受力分析。根據(jù)牛頓定律有 又因?yàn)榻M合輪的轉(zhuǎn)動(dòng)慣量是兩輪慣量之和,根據(jù)轉(zhuǎn)動(dòng)定理有(從積分定義式即可算出)而且,(列1.牛二2.轉(zhuǎn)動(dòng)定律3.約束方程即可求解) 36如本題圖所示裝置,定滑輪的半徑為r,繞轉(zhuǎn)軸的轉(zhuǎn)動(dòng)慣量為J,滑輪兩邊分別懸掛質(zhì)量為m1和m2的物體A、B。A置于傾角為
31、的斜面上,它和斜面間的摩擦因數(shù)為。若B向下作加速運(yùn)動(dòng)時(shí),求:(1)其下落加速度的大??;(2)滑輪兩邊繩子的張力。(設(shè)繩的質(zhì)量及伸長(zhǎng)均不計(jì),繩與滑輪間無(wú)滑動(dòng),滑輪軸光滑)解:A、B物體的受力分析如圖。根據(jù)牛頓定律有 對(duì)滑輪而言,根據(jù)轉(zhuǎn)動(dòng)定律有 由于繩子不可伸長(zhǎng)、繩與輪之間無(wú)滑動(dòng),則 圖3-32 習(xí)題3-7圖3-7 如圖3-32所示,定滑輪轉(zhuǎn)動(dòng)慣量為 J,半徑為 r;物體的質(zhì)量為 m,用一細(xì)繩與勁度系數(shù)為 k 的彈簧相連,若繩與滑輪間無(wú)相對(duì)滑動(dòng),滑輪軸上的摩擦忽略不計(jì)。當(dāng)繩拉直、彈簧無(wú)伸長(zhǎng)時(shí)使物體由靜止開始下落。求:(1)物體下落的最大距離;(2) 物體的速度達(dá)最大值時(shí)的位置。解:(1)機(jī)械能守恒
32、。設(shè)下落最大距離為 (2)(物體的重力勢(shì)能轉(zhuǎn)化為這些能)若速度達(dá)最大值,圖3-36 習(xí)題3-11圖3-8 如圖3-33所示,一輕彈簧與一均勻細(xì)棒連接,裝置如圖所示,已知彈簧的勁度系數(shù),當(dāng)時(shí)彈簧無(wú)形變,細(xì)棒的質(zhì)量,求在的位置上細(xì)棒至少應(yīng)具有多大的角速度,才能轉(zhuǎn)動(dòng)到水平位置?解:機(jī)械能守恒圖3-33 習(xí)題3-8圖(一開始的機(jī)械能=后面的機(jī)械能,水平臨界狀態(tài)速度為零,沒有轉(zhuǎn)動(dòng)能) 據(jù)幾何關(guān)系 圖3-34 習(xí)題3-9圖3-9 如圖3-34所示,一質(zhì)量為、半徑為的圓盤,可繞過點(diǎn)的水平軸在豎直面內(nèi)轉(zhuǎn)動(dòng)。若盤從圖中實(shí)線位置開始由靜止下落,略去軸承的摩擦,求:(1)盤轉(zhuǎn)到圖中虛線所示的鉛直位置時(shí),質(zhì)心C和盤緣
33、A點(diǎn)的速率;(2)在虛線位置軸對(duì)圓盤的作用力。解:在虛線位置的C點(diǎn)設(shè)為重力勢(shì)能的零點(diǎn),下降過程機(jī)械能守恒圖3-34 習(xí)題3-9圖 (平行軸定理:圓心到O) 方向向上圖3-35 習(xí)題3-10圖3-10 如圖3-35所示,一質(zhì)量為的質(zhì)點(diǎn)以v的速度作勻速直線運(yùn)動(dòng)。試證明:從直線外任意一點(diǎn)O到質(zhì)點(diǎn)的矢量r在相同的時(shí)間內(nèi)掃過的面積相同。解:質(zhì)點(diǎn)不受任何力作用才會(huì)作勻速直線運(yùn)動(dòng),因而它對(duì)O點(diǎn)的力矩也為零,即對(duì)O點(diǎn)的角動(dòng)量守恒 常量。另一方面,矢量r在單位時(shí)間內(nèi)掃過的面積:=常量。3-11 如圖3-36所示,質(zhì)量的衛(wèi)星開始時(shí)繞地球作半徑為的圓周運(yùn)動(dòng)。由于某種原因衛(wèi)星的運(yùn)動(dòng)方向突然改變了q =30角,而速率不
34、變,此后衛(wèi)星繞地球作橢圓運(yùn)動(dòng)。求(1)衛(wèi)星繞地球作圓周運(yùn)動(dòng)時(shí)的速率v;(2)衛(wèi)星繞地球橢圓運(yùn)動(dòng)時(shí),距地心的最遠(yuǎn)和最近距離和。解:(1)由 ,得 (2) 衛(wèi)星在運(yùn)動(dòng)過程中對(duì)地心的角動(dòng)量守恒和機(jī)械能守恒: (rF=0,角動(dòng)量守恒)(橢圓的三個(gè)點(diǎn),突變前不守恒)(突變后橢圓的三個(gè)點(diǎn))其中,、分別是衛(wèi)星在遠(yuǎn)地點(diǎn)與近地點(diǎn)時(shí)的速率,可求出,LoMmv習(xí)題3-7圖312如本題圖所示,質(zhì)量為M長(zhǎng)為L(zhǎng)的均勻直桿可繞過端點(diǎn)o的水平軸轉(zhuǎn)動(dòng),一質(zhì)量為m的質(zhì)點(diǎn)以水平速度v與靜止桿的下端發(fā)生碰撞,如圖示,若M=6m,求質(zhì)點(diǎn)與桿分別作完全彈性碰撞和完全非彈性碰撞后桿的角速度大小。解:(1)質(zhì)點(diǎn)與桿完全彈性碰撞,則能量守恒
35、又因?yàn)榻莿?dòng)量守恒 (碰撞的瞬間角動(dòng)量守恒) 且 , (2) 完全非彈性碰撞,角動(dòng)量守恒 又 習(xí)題313圖313如本題圖所示,A與B兩飛輪的軸桿由摩擦嚙合器連接,A輪的轉(zhuǎn)動(dòng)慣量J1=10.0kgm2,開始時(shí)B輪靜止,A輪以n1=600r/min的轉(zhuǎn)速轉(zhuǎn)動(dòng),然后使A與B連接,因而B輪得到加速而A輪減速,直到兩輪的轉(zhuǎn)速都等于n=200r/min為止。求:(1)B輪的轉(zhuǎn)動(dòng)慣量;(2)在嚙合過程中損失的機(jī)械能。解:(1)取兩飛輪為系統(tǒng),嚙合過程中系統(tǒng)角動(dòng)量守恒,即(沒有外力) 所以B輪的轉(zhuǎn)動(dòng)慣量為 (2)嚙合過程中系統(tǒng)機(jī)械能變化圖3-39 習(xí)題3-14圖圖3-39 習(xí)題3-14圖3-14 如圖3-39所
36、示,長(zhǎng)為的輕桿(質(zhì)量不計(jì)),兩端各固定質(zhì)量分別為和的小球,桿可繞水平光滑固定軸O在豎直面內(nèi)轉(zhuǎn)動(dòng),轉(zhuǎn)軸O距兩端分別為和。輕桿原來(lái)靜止在豎直位置。今有一質(zhì)量為的小球,以水平速度v0與桿下端小球作對(duì)心碰撞,碰后以的速度返回,試求碰撞后輕桿所獲得的角速度。解:根據(jù)角動(dòng)量守衡 有圖3-40 習(xí)題3-15圖3-15 如圖3-40所示,有一空心圓環(huán)可繞豎直軸OO自由轉(zhuǎn)動(dòng),轉(zhuǎn)動(dòng)慣量為J0 ,環(huán)的半徑為R,初始的角速度為0 ,今有一質(zhì)量為m 的小球靜止在環(huán)內(nèi)A 點(diǎn),由于微小擾動(dòng)使小球向下滑動(dòng)。問小球到達(dá)B、C點(diǎn)時(shí),環(huán)的角速度與小球相對(duì)于環(huán)的速度各為多少? (假設(shè)環(huán)內(nèi)壁光滑。)圖3-40 習(xí)題3-15圖解: (1
37、)小球與圓環(huán)系統(tǒng)對(duì)豎直軸的角動(dòng)量守恒,當(dāng)小球滑至點(diǎn)時(shí),有(球看成質(zhì)心J=mR2) 該系統(tǒng)在轉(zhuǎn)動(dòng)過程中,機(jī)械能守恒,設(shè)小球相對(duì)于圓環(huán)的速率為,以點(diǎn)為重力勢(shì)能零點(diǎn),則有 聯(lián)立、兩式,得(2)當(dāng)小球滑至點(diǎn)時(shí), 故由機(jī)械能守恒,有(A、C兩點(diǎn)沒有轉(zhuǎn)動(dòng),所以轉(zhuǎn)動(dòng)慣量回到初始狀態(tài),) 316一長(zhǎng)為2L的均勻細(xì)桿,一端靠墻上,另一端放在的水平地板上,如本題圖所示,所有的摩擦均可略去不計(jì),開始時(shí)細(xì)桿靜止并與地板成0角,當(dāng)松開細(xì)桿后,細(xì)桿開始滑下。問細(xì)桿脫離墻壁時(shí),細(xì)桿與地面的夾角為多大?解:如圖,以初始細(xì)桿的質(zhì)心為原點(diǎn)建立坐標(biāo)系,則任意時(shí)刻質(zhì)心坐標(biāo)為 (1) (2) 取初始位置的勢(shì)能為零,則根據(jù)機(jī)械能守恒有
38、(3)(掉下了y,轉(zhuǎn)化為.)將式(1)代入(3)得 (4) (5) 當(dāng)細(xì)桿與墻壁脫離接觸時(shí), (6) 將式(4)、(5)、(6)代入(2)解得OCAB317如本題圖所示,A、B兩個(gè)輪子的質(zhì)量分別為m1和m2,半徑分別為r1和r2。另有一細(xì)繩繞在兩輪上,并按圖所示連接。其中A輪繞固定軸O轉(zhuǎn)動(dòng)。試求:(1)B輪下落時(shí),其輪心的加速度;(2)細(xì)繩的拉力。解:如圖,取豎直向下為正方向。輪A作定軸轉(zhuǎn)動(dòng),設(shè)其角加速度為,根據(jù)轉(zhuǎn)動(dòng)定理有 輪B作平面運(yùn)動(dòng),設(shè)質(zhì)心加速度為,角加速度為,根據(jù)牛頓定律有 根據(jù)轉(zhuǎn)動(dòng)定理有 A輪邊緣一點(diǎn)加速度 B輪邊緣一點(diǎn)加速度 Clh習(xí)題3-18圖 而且 ,318如本題圖所示,一長(zhǎng)為
39、l的均質(zhì)桿自水平放置的初始位置平動(dòng)自由下落,落下h距離時(shí)與一豎直固定板的頂部發(fā)生完全彈性碰撞,桿上碰撞點(diǎn)在距質(zhì)心C為l/4處,求碰撞后瞬間的質(zhì)心速率和桿的角速度。解:由機(jī)械能守恒 其中J為繞質(zhì)心轉(zhuǎn)動(dòng)慣量由動(dòng)量定理 由角動(dòng)量定理 聯(lián)立解得 ,q2q-4q2q習(xí)題41圖第4章真空中的靜電場(chǎng)41 在邊長(zhǎng)為a的正方形的四角,依次放置點(diǎn)電荷q,2q,-4q和2q,它的幾何中心放置一個(gè)單位正電荷,求這個(gè)電荷受力的大小和方向。解:如圖可看出兩2q的電荷對(duì)單位正電荷的在作用力將相互抵消,單位正電荷所受的力為方向由q指向-4q。42 如圖,均勻帶電細(xì)棒,長(zhǎng)為L(zhǎng),電荷線密度為。(1)求棒的延長(zhǎng)線上任一點(diǎn)P的場(chǎng)強(qiáng);
40、(2)求通過棒的端點(diǎn)與棒垂直上任一點(diǎn)Q的場(chǎng)強(qiáng)。0dqxdx,P習(xí)題42 圖ax解:(1)如圖72 圖a,在細(xì)棒上任取電荷元dq,建立如圖坐標(biāo),dqldx,設(shè)棒的延長(zhǎng)線上任一點(diǎn)P與坐標(biāo)原點(diǎn)0的距離為x,則整根細(xì)棒在P點(diǎn)產(chǎn)生的電場(chǎng)強(qiáng)度的大小為0dqxdx,P習(xí)題42 圖bydEqyQq00方向沿x軸正向。(2)如圖72 圖b,設(shè)通過棒的端點(diǎn)與棒垂直上任一點(diǎn)Q與坐標(biāo)原點(diǎn)0的距離為y, 因,代入上式,則,方向沿x軸負(fù)向。43 一細(xì)棒彎成半徑為R的半圓形,均勻分布有電荷q,求半圓中心O處的場(chǎng)強(qiáng)。dqqqdExy習(xí)題43圖R解:如圖,在半環(huán)上任取dl=Rdq的線元,其上所帶的電荷為dq=lRdq。對(duì)稱分析
41、Ey=0。,如圖,方向沿x軸正向。a12習(xí)題44圖0 xdq44 如圖線電荷密度為1的無(wú)限長(zhǎng)均勻帶電直線與另一長(zhǎng)度為l、線電荷密度為2的均勻帶電直線在同一平面內(nèi),二者互相垂直,求它們間的相互作用力。解:在2的帶電線上任取一dq,1的帶電線是無(wú)限長(zhǎng),它在dq處產(chǎn)生的電場(chǎng)強(qiáng)度由高斯定理容易得到為,兩線間的相互作用力為如圖,方向沿x軸正向。45 兩個(gè)點(diǎn)電荷所帶電荷之和為Q,問它們各帶電荷多少時(shí),相互作用力最大?解:設(shè)其中一個(gè)電荷的帶電量是q,另一個(gè)即為Qq,若它們間的距離為r,它們間的相互作用力為相互作用力最大的條件為由上式可得:Q=2q,q=Q/2yqr習(xí)題46圖o46 一半徑為R的半球殼,均勻帶
42、有電荷,電荷面密度為,求球心處電場(chǎng)強(qiáng)度的大小。 解:將半球殼細(xì)割為諸多細(xì)環(huán)帶,其上帶電量為dq在o點(diǎn)產(chǎn)生的電場(chǎng)據(jù)(710)式為,。如圖,方向沿y軸負(fù)向。47 設(shè)勻強(qiáng)電場(chǎng)的電場(chǎng)強(qiáng)度E與半徑為R的半球面對(duì)稱軸平行,計(jì)算通過此半球面電場(chǎng)強(qiáng)度的通量。S1S2E習(xí)題47圖解:如圖,設(shè)作一圓平面S1蓋住半球面S2,成為閉合曲面高斯,對(duì)此高斯曲面電通量為0,即r0R習(xí)題48圖48 求半徑為R,帶電量為q的空心球面的電場(chǎng)強(qiáng)度分布。解: 由于電荷分布具有球?qū)ΨQ性,因而它所產(chǎn)生的電場(chǎng)分布也具有球?qū)ΨQ性,與帶電球面同心的球面上各點(diǎn)的場(chǎng)強(qiáng)E的大小相等,方向沿徑向。在帶電球內(nèi)部與外部區(qū)域分別作與帶電球面同心的高斯球面S
43、1與S2。對(duì)S1與S2,應(yīng)用高斯定理,即先計(jì)算場(chǎng)強(qiáng)的通量,然后得出場(chǎng)強(qiáng)的分布,分別為得 (rR)d習(xí)題49圖0 xE49 如圖所示,厚度為d的“無(wú)限大”均勻帶電平板,體電荷密度為,求板內(nèi)外的電場(chǎng)分布。解:帶電平板均勻帶電,在厚度為d/2的平分街面上電場(chǎng)強(qiáng)度為零,取坐標(biāo)原點(diǎn)在此街面上,建立如圖坐標(biāo)。對(duì)底面積為A,高度分別為xd/2的高斯曲面應(yīng)用高斯定理,有得 習(xí)題410圖ro 410 一半徑為R的無(wú)限長(zhǎng)帶電圓柱,其體電荷密度為,0為常數(shù)。求場(chǎng)強(qiáng)分布。解: 據(jù)高斯定理有時(shí):時(shí):411 帶電為q、半徑為R1的導(dǎo)體球,其外同心地放一金屬球殼,球殼內(nèi)、外半徑為R2、R3。oR1R2R3q-qq習(xí)題411
44、圖(1)球殼的電荷及電勢(shì)分布;(2)把外球接地后再絕緣,求外球殼的電荷及球殼內(nèi)外電勢(shì)分布;(3)再把內(nèi)球接地,求內(nèi)球的電荷及外球殼的電勢(shì)。解:(1)靜電平衡,球殼內(nèi)表面帶q,外表面帶q電荷。據(jù)(723)式的結(jié)論得: (2) (3)再把內(nèi)球接地,內(nèi)球的電荷及外球殼的電荷重新分布設(shè)靜電平衡,內(nèi)球帶q/,球殼內(nèi)表面帶q/,外表面帶q/q。得:oo/pr2r1習(xí)題412圖412 一均勻、半徑為R的帶電球體中,存在一個(gè)球形空腔,空腔的半徑r(2rR),細(xì)線近端離球心的距離為L(zhǎng)。設(shè)球和細(xì)線上的電荷分布固定,試求細(xì)線在電場(chǎng)中的電勢(shì)能。解:在帶電細(xì)線中任取一長(zhǎng)度為dr的線元,其上所帶的電荷元為dq=ldr,據(jù)
45、(723)式帶電球面在電荷元處產(chǎn)生的電勢(shì)為電荷元的電勢(shì)能為: 細(xì)線在帶電球面的電場(chǎng)中的電勢(shì)能為: p習(xí)題415圖xo*415 半徑為R的均勻帶電圓盤,帶電量為Q。過盤心垂直于盤面的軸線上一點(diǎn)P到盤心的距離為L(zhǎng)。試求P點(diǎn)的電勢(shì)并利用電場(chǎng)強(qiáng)度與電勢(shì)的梯度關(guān)系求電場(chǎng)強(qiáng)度。解:P到盤心的距離為L(zhǎng),p點(diǎn)的電勢(shì)為圓盤軸線上任意點(diǎn)的電勢(shì)為利用電場(chǎng)強(qiáng)度與電勢(shì)的梯度關(guān)系得:P到盤心的距離為L(zhǎng),p點(diǎn)的電場(chǎng)強(qiáng)度為:416 兩個(gè)同心球面的半徑分別為R1和R2,各自帶有電荷Q1和Q2。求:(1)各區(qū)城電勢(shì)分布,并畫出分布曲線;(2)兩球面間的電勢(shì)差為多少?解:(1)據(jù)(723)式的結(jié)論得各區(qū)城電勢(shì)分布為oQ1Q2R1R
46、2習(xí)題416圖 (2)兩球面間的電勢(shì)差為417 一半徑為R的無(wú)限長(zhǎng)帶電圓柱,其內(nèi)部的電荷均勻分布,電荷體密度為,若取棒表面為零電勢(shì),求空間電勢(shì)分布并畫出電勢(shì)分布曲線。解: 據(jù)高斯定理有時(shí):時(shí),V=0,則時(shí):時(shí):RroV空間電勢(shì)分布并畫出電勢(shì)分布曲線大致如圖。418 兩根很長(zhǎng)的同軸圓柱面半徑分別為R1、R2,帶有等量異號(hào)的電荷,兩者的電勢(shì)差為U,求:(1)圓柱面單位長(zhǎng)度帶有多少電荷?(2)兩圓柱面之間的電場(chǎng)強(qiáng)度。習(xí)題418圖ro解:設(shè)圓柱面單位長(zhǎng)度帶電量為l,則兩圓柱面之間的電場(chǎng)強(qiáng)度大小為兩圓柱面之間的電勢(shì)差為由上式可得:所以419 在一次典型的閃電中,兩個(gè)放電點(diǎn)間的電勢(shì)差約為109V,被遷移的
47、電荷約為30庫(kù)侖,如果釋放出來(lái)的能量都用來(lái)使00C的冰熔化成00C的水,則可融化多少冰?(冰的熔解熱為3.34105Jkg-1)解:兩個(gè)放電點(diǎn)間的電勢(shì)差約為109V,被遷移的電荷約為30庫(kù)侖,其電勢(shì)能為上式釋放出來(lái)的能量可融化冰的質(zhì)量為:8.98104kg420 在玻爾的氫原子模型中,電子沿半徑為a的玻爾軌道上繞原子核作圓周運(yùn)動(dòng)。(1)若把電子從原子中拉出來(lái)需要克服電場(chǎng)力作多少功?(2)電子在玻爾軌道上運(yùn)動(dòng)的總能量為多少?解:電子沿半徑為a的玻爾軌道上繞原子核作圓周運(yùn)動(dòng),其電勢(shì)能為(1)把電子從原子中拉出來(lái)需要克服電場(chǎng)力作功為:(2)電子在玻爾軌道上運(yùn)動(dòng)的總能量為:電子的總能量為:第五章 靜電
48、場(chǎng)中的導(dǎo)體與電介質(zhì)R2R1習(xí)題 51圖q-qq51 點(diǎn)電荷+q處在導(dǎo)體球殼的中心,殼的內(nèi)外半徑分別為Rl和R2,試求,電場(chǎng)強(qiáng)度和電勢(shì)的分布。解:靜電平衡時(shí),球殼的內(nèi)球面帶q、外球殼帶q電荷在rR1的區(qū)域內(nèi),在R1rR2的區(qū)域內(nèi):52 把一厚度為d的無(wú)限大金屬板置于電場(chǎng)強(qiáng)度為E0的勻強(qiáng)電場(chǎng)中,E0與板面垂直,試求金屬板兩表面的電荷面密度。E0E0習(xí)題 52圖s1s2解:靜電平衡時(shí),金屬板內(nèi)的電場(chǎng)為0,金屬板表面上電荷面密度與緊鄰處的電場(chǎng)成正比所以有53 一無(wú)限長(zhǎng)圓柱形導(dǎo)體,半徑為a,單位長(zhǎng)度帶有電荷量l1,其外有一共軸的無(wú)限長(zhǎng)導(dǎo)體圓簡(jiǎn),內(nèi)外半徑分別為b和c,單位長(zhǎng)度帶有電荷量l2,求(1)圓筒內(nèi)
49、外表面上每單位長(zhǎng)度的電荷量;(2)求電場(chǎng)強(qiáng)度的分布。解:(1)由靜電平衡條件,圓筒內(nèi)外表面上每單位長(zhǎng)度的電荷量為習(xí)題 53圖(2)在ra的區(qū)域內(nèi):E=0在ab的區(qū)域內(nèi):Een54 三個(gè)平行金屬板A、B和C,面積都是200cm2,A、B相距4.0mm,A、C相距2.0mm,B、C兩板都接地,如圖所示。如果A板帶正電3.0107C,略去邊緣效應(yīng)(1)求B板和C板上感應(yīng)電荷各為多少?(2)以地為電勢(shì)零點(diǎn),求A板的電勢(shì)。解:(1)設(shè)A板兩側(cè)的電荷為q1、q2,由電荷守恒原理和靜電平衡條件,有ABC習(xí)題 54圖d1d2(1),(2)依題意VAB=VAC,即代入(1)(2)式得q11.010-7C,q22
50、.010-7C,qB1.010-7C,qC=-q22.010-7C,(2)=2.3103V習(xí)題 55圖q-qq+Q55 半徑為R1=l.0cm的導(dǎo)體球帶電量為q=1.01010 C,球外有一個(gè)內(nèi)外半徑分別為R2=3.0cm和R3=4.0cm的同心導(dǎo)體球殼,殼帶有電量Q=111010 C,如圖所示,求(1)兩球的電勢(shì);(2)用導(dǎo)線將兩球連接起來(lái)時(shí)兩球的電勢(shì);(3)外球接地時(shí),兩球電勢(shì)各為多少?(以地為電勢(shì)零點(diǎn))解:靜電平衡時(shí),球殼的內(nèi)球面帶q、外球殼帶q+Q電荷(1)代入數(shù)據(jù)3.3102V=2.7102V(2)用導(dǎo)線將兩球連接起來(lái)時(shí)兩球的電勢(shì)為=2.7102V(3)外球接地時(shí),兩球電勢(shì)各為60V
51、56 證明:兩平行放置的無(wú)限大帶電的平行平面金屬板A和B相向的兩面上電荷面密度大小相等,符號(hào)相反,相背的兩面上電荷面密度大小等,符號(hào)相同。如果兩金屬板的面積同為100cm2,帶電量分別為QA=6108 C和QB=4108C,略去邊緣效應(yīng),求兩個(gè)板的四個(gè)表面上的電面密度。證:設(shè)A板帶電量為QA、兩側(cè)的電荷為q1、q2,B板板帶電量為QB、兩側(cè)的電荷為q3、q4。由電荷守恒有q2AB習(xí)題 56圖q1q3q4(1)(2)在A板與B板內(nèi)部取兩場(chǎng)點(diǎn),金屬板內(nèi)部的電場(chǎng)為零有,得(3),得(4)聯(lián)立上面4個(gè)方程得:,即相向的兩面上電荷面密度大小相等,符號(hào)相反,相背的兩面上電荷面密度大小等,符號(hào)相同,本題得證
52、。如果兩金屬板的面積同為100cm2,帶電量分別為QA=6108 C和QB=4108C,則5.0106C/m2,1.010-6C/m257 半徑為R的金屬球離地面很遠(yuǎn),并用細(xì)導(dǎo)線與地相聯(lián),在與球心相距離為D=3R處有一點(diǎn)電荷+q,試求金屬球上的感應(yīng)電荷。qQD=3RR習(xí)題 57圖解:設(shè)金屬球上的感應(yīng)電荷為Q,金屬球接地電勢(shì)為零,即tdbx習(xí)題 58圖58 一平行板電容器,兩極板為相同的矩形,寬為a,長(zhǎng)為b,間距為d,今將一厚度為t、寬度為a的金屬板平行地向電容器內(nèi)插入,略去邊緣效應(yīng),求插入金屬板后的電容量與金屬板插入深度x的關(guān)系。解:設(shè)如圖左邊電容為C1,右邊電容為C2左右電容并聯(lián),總電容即金
53、屬板后的電容量與金屬板插入深度x的關(guān)系,為=(a)(b)習(xí)題 59圖59 收音機(jī)里的可變電容器如圖(a)所示,其中共有n塊金屬片,相鄰兩片的距離均為d,奇數(shù)片聯(lián)在一起固定不動(dòng)(叫定片)偶數(shù)片聯(lián)在起而可一同轉(zhuǎn)動(dòng)(叫動(dòng)片)每片的形狀如圖(b)所示。求當(dāng)動(dòng)片轉(zhuǎn)到使兩組片重疊部分的角度為q時(shí),電容器的電容。解:當(dāng)動(dòng)片轉(zhuǎn)到使兩組片重疊部分的角度為q時(shí),電容器的電容的有效面積為此結(jié)構(gòu)相當(dāng)有n-1的電容并聯(lián),總電容為510 半徑都為a的兩根平行長(zhǎng)直導(dǎo)線相距為d(da),(1)設(shè)兩直導(dǎo)線每單位長(zhǎng)度上分別帶電十l和一l求兩直導(dǎo)線的電勢(shì)差;(2)求此導(dǎo)線組每單位長(zhǎng)度的電容。解:(1)兩直導(dǎo)線的電電場(chǎng)強(qiáng)度大小為or
54、習(xí)題 510圖兩直導(dǎo)線之間的電勢(shì)差為(2)求此導(dǎo)線組每單位長(zhǎng)度的電容為=ABC1C3C2習(xí)題 511圖511 如圖,C1=10mF,C2=5mF,C3=5mF,求(1)AB間的電容;(2)在AB間加上100V電壓時(shí),求每個(gè)電容器上的電荷量和電壓;(3)如果C1被擊穿,問C3上的電荷量和電壓各是多少?解:(1)AB間的電容為=3.75mF;(2)在AB間加上100V電壓時(shí),電路中的總電量就是C3電容器上的電荷量,為(3)如果C1被擊穿,C2短路,AB間的100V電壓全加在C3上,即V3=100V,C3上的電荷量為V習(xí)題 512圖512 平行板電容器,兩極間距離為l.5cm,外加電壓39kV,若空氣的擊穿場(chǎng)強(qiáng)為30kV/cm,問此時(shí)電容器是否會(huì)被擊穿?現(xiàn)將一厚度為0.3cm的玻璃插入電容器中與兩板平行,若玻璃的相對(duì)介電常數(shù)為7,擊穿場(chǎng)強(qiáng)為100kV/cm,問此時(shí)電容器是否會(huì)被擊穿?結(jié)果與玻璃片的位置有無(wú)關(guān)系?解:(1)未加玻璃前,兩極間的電場(chǎng)為不會(huì)擊穿(2)加玻璃后,兩極間的電壓為空氣部分會(huì)擊穿,此后,玻璃中的電場(chǎng)為,玻璃部分也被擊穿。結(jié)果與玻璃片的位置無(wú)關(guān)。513 一平行板電容器極板面積為S,兩板間距離為d,其間充以相對(duì)介電常數(shù)分別為er1、er2,的兩種均勻電
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年防凍教育安全教育班會(huì)全文PPT
- 2025年寒假安全教育班會(huì)全文PPT
- 初中2025年冬季防溺水安全教育全文PPT
- 初中臘八節(jié)2024年專題PPT
- 主播直播培訓(xùn)提升人氣的方法正確的直播方式如何留住游客
- XX地區(qū)機(jī)關(guān)工委2024年度年終黨建工作總結(jié)述職匯報(bào)
- 心肺復(fù)蘇培訓(xùn)(心臟驟停的臨床表現(xiàn)與診斷)
- 我的大學(xué)生活介紹
- XX單位2024年終專題組織生活會(huì)理論學(xué)習(xí)理論學(xué)習(xí)強(qiáng)黨性凝心聚力建新功
- 2024年XX單位個(gè)人述職述廉報(bào)告
- 一文解讀2025中央經(jīng)濟(jì)工作會(huì)議精神(使社會(huì)信心有效提振經(jīng)濟(jì)明顯回升)
- 2025職業(yè)生涯規(guī)劃報(bào)告自我評(píng)估職業(yè)探索目標(biāo)設(shè)定發(fā)展策略
- 2024年度XX縣縣委書記個(gè)人述職報(bào)告及2025年工作計(jì)劃
- 寒假計(jì)劃中學(xué)生寒假計(jì)劃安排表(規(guī)劃好寒假的每個(gè)階段)
- 中央經(jīng)濟(jì)工作會(huì)議九大看點(diǎn)學(xué)思想強(qiáng)黨性重實(shí)踐建新功