2019高考數(shù)學(xué)大二輪復(fù)習(xí) 專題8 解析幾何 第2講 綜合大題部分真題押題精練 理
《2019高考數(shù)學(xué)大二輪復(fù)習(xí) 專題8 解析幾何 第2講 綜合大題部分真題押題精練 理》由會員分享,可在線閱讀,更多相關(guān)《2019高考數(shù)學(xué)大二輪復(fù)習(xí) 專題8 解析幾何 第2講 綜合大題部分真題押題精練 理(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第2講 綜合大題部分 1. (2017·高考全國卷Ⅰ)已知橢圓C:+=1(a>b>0),四點P1(1,1),P2(0,1),P3,P4中恰有三點在橢圓C上. (1)求C的方程; (2)設(shè)直線l不經(jīng)過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為-1,證明:l過定點. 解析:(1)由于P3,P4兩點關(guān)于y軸對稱, 故由題設(shè)知C經(jīng)過P3,P4兩點. 又由+>+知,C不經(jīng)過點P1, 所以點P2在C上.因此解得 故橢圓C的方程為+y2=1. (2)證明:設(shè)直線P2A與直線P2B的斜率分別為k1,k2. 如果l與x軸垂直,設(shè)l:x=t,由題設(shè)知t≠0,且|
2、t|<2, 可得A,B的坐標(biāo)分別為,. 則k1+k2=-=-1,得t=2,不符合題設(shè).從而可設(shè)l:y=kx+m(m≠1). 將y=kx+m代入+y2=1得 (4k2+1)x2+8kmx+4m2-4=0. 由題設(shè)可知Δ=16(4k2-m2+1)>0. 設(shè)A(x1,y1),B(x2,y2), 則x1+x2=-,x1x2=. 而k1+k2=+=+ =. 由題設(shè)k1+k2=-1, 故(2k+1)x1x2+(m-1)(x1+x2)=0. 即(2k+1)·+(m-1)·=0. 解得k=-. 當(dāng)且僅當(dāng)m>-1時,Δ>0,于是l:y=-x+m, 即y+1=-(x-2), 所以l
3、過定點(2,-1). 2.(2017·高考全國卷Ⅲ)已知拋物線C:y2=2x,過點(2,0)的直線l交C于A,B兩點,圓M是以線段AB為直徑的圓. (1)證明:坐標(biāo)原點O在圓M上; (2)設(shè)圓M過點P(4,-2),求直線l與圓M的方程. 解析:(1)證明:設(shè)A(x1,y1),B(x2,y2),l:x=my+2, 由可得y2-2my-4=0,則y1y2=-4. 又x1=,x2=,故x1x2==4. 因此OA的斜率與OB的斜率之積為·==-1,所以O(shè)A⊥OB,故坐標(biāo)原點O在圓M上. (2)由(1)可得y1+y2=2m,x1+x2=m(y1+y2)+4=2m2+4, 故圓心M的坐標(biāo)
4、為(m2+2,m),圓M的半徑 r=. 由于圓M過點P(4,-2),因此·=0, 故(x1-4)(x2-4)+(y1+2)(y2+2)=0, 即x1x2-4(x1+x2)+y1y2+2(y1+y2)+20=0. 由(1)可知y1y2=-4,x1x2=4, 所以2m2-m-1=0,解得m=1或m=-. 當(dāng)m=1時,直線l的方程為x-y-2=0,圓心M的坐標(biāo)為(3,1),圓M的半徑為, 圓M的方程為(x-3)2+(y-1)2=10. 當(dāng)m=-時,直線l的方程為2x+y-4=0,圓心M的坐標(biāo)為, 圓M的半徑為, 圓M的方程為2+2=. 3.(2017·高考全國卷Ⅱ)設(shè)O為坐標(biāo)
5、原點,動點M在橢圓C:+y2=1上,過M作x軸的垂線,垂足為N,點P滿足= . (1)求點P的軌跡方程; (2)設(shè)點Q在直線x=-3上,且·=1.證明:過點P且垂直于OQ的直線l過C的左焦點F. 解析:(1)設(shè)P(x,y),M(x0,y0),則N(x0,0),=(x-x0,y),=(0,y0). 由= 得x0=x,y0=y(tǒng). 因為M(x0,y0)在C上,所以+=1. 因此點P的軌跡方程為x2+y2=2. (2)證明:由題意知F(-1,0).設(shè)Q(-3,t),P(m,n),則 =(-3,t),=(-1-m,-n),·=3+3m-tn, =(m,n),=(-3-m,t-n).
6、由·=1得-3m-m2+tn-n2=1, 又由(1)知m2+n2=2, 故3+3m-tn=0. 所以·=0,即⊥. 又過點P存在唯一直線垂直于OQ, 所以過點P且垂直于OQ的直線l過C的左焦點F. 1. 已知動圓M恒過點(0,1),且與直線y=-1相切. (1)求圓心M的軌跡方程; (2)動直線l過點P(0,-2),且與點M的軌跡交于A,B兩點,點C與點B關(guān)于y軸對稱,求證:直線AC恒過定點. 解析:(1)由題意得點M與點(0,1)的距離始終等于點M與直線y=-1的距離,由拋物線定義知圓心M的軌跡為以點(0,1)為焦點,直線y=-1為準(zhǔn)線的拋物線,則=1,p=2. ∴圓
7、心M的軌跡方程為x2=4y. (2)證明:由題意知直線l的斜率存在,設(shè)直線l:y=kx-2,設(shè)A(x1,y1),B(x2,y2),則C(-x2,y2), 由得x2-4kx+8=0, ∴x1+x2=4k,x1x2=8. kAC===,直線AC的方程為y-y1=(x-x1). 即y=y(tǒng)1+(x-x1)=x-+=x+, ∵x1x2=8,∴y=x+=x+2, 則直線AC恒過點(0,2). 2.已知橢圓E:+=1(a>b>0),過點(0,1)且離心率為. (1)求橢圓E的方程; (2)設(shè)直線l:y=x+m與橢圓E交于A,C兩點,以AC為對角線作正方形ABCD,記直線l與x軸的交點為N
8、,問B,N兩點間的距離是否為定值?如果是,求出定值;如果不是,請說明理由.
解析:(1)由題意可知,橢圓的焦點在x軸上,橢圓過點(0,1),則b=1.
由橢圓的離心率e== =,解得a=2,
所以橢圓E的標(biāo)準(zhǔn)方程為+y2=1.
(2)設(shè)A(x1,y1),C(x2,y2),線段AC的中點為M(x0,y0).
由整理得x2+2mx+2m2-2=0.
由Δ=(2m)2-4(2m2-2)=8-4m2>0,
解得- 9、x軸的交點為N(-2m,0),
所以|MN|= = ,
所以|BN|2=|BM|2+|MN|2=|AC|2+|MN|2=.
故B,N兩點間的距離為定值.
3. 已知矩形EFCD,|EF|=2,|FC|=,以EF的中點O為原點,建立如圖所示的平面直角坐標(biāo)系xOy.
(1)求以E,F(xiàn)為焦點,且過C,D兩點的橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,過點F作直線l與橢圓交于不同的兩點A,B,設(shè)=λ,點T的坐標(biāo)為(2,0),若λ∈[-2,-1],求|+|的取值范圍.
解析:(1)由題意得E(-1,0),F(xiàn)(1,0),C(1,),
設(shè)所求橢圓的標(biāo)準(zhǔn)方程為+=1(a>b>0),
則2a= 10、|CE|+|CF|=2>2,
所以a=,所以b2=a2-c2=1,
故橢圓的標(biāo)準(zhǔn)方程為+y2=1.
(2)易知直線l的斜率不為0,故可設(shè)直線l的方程為x=ky+1,設(shè)A(x1,y1),B(x2,y2),
由得,(k2+2)y2+2ky-1=0.
由根與系數(shù)的關(guān)系,得y1+y2=-, ①
y1y2=-, ②
因為=λ,所以=λ且λ<0,
將①的平方除以②,得++2=-,
所以λ++2=-,
由λ∈[-2,-1],得-≤λ+≤-2,
所以-≤λ++2≤0,
即-≤-≤0,解得k2≤,
即0≤k2≤.
因為=(x1-2,y1),=(x2-2,y2),
所以+=(x1+x2-4,y1+y2),
又y1+y2=-,x1+x2-4=k(y1+y2)-2=-.
故|+|2=(x1+x2-4)2+(y1+y2)2
=+
=
=16-+.
令t=,因為0≤k2≤,
所以≤≤,即≤t≤,
則|+|2=16-28t+8t2=8(t-)2-,
因為≤t≤,
所以|+|2∈[4,],
所以|+|∈[2,].
即|+|的取值范圍為[2,].
7
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年防凍教育安全教育班會全文PPT
- 2025年寒假安全教育班會全文PPT
- 初中2025年冬季防溺水安全教育全文PPT
- 初中臘八節(jié)2024年專題PPT
- 主播直播培訓(xùn)提升人氣的方法正確的直播方式如何留住游客
- XX地區(qū)機關(guān)工委2024年度年終黨建工作總結(jié)述職匯報
- 心肺復(fù)蘇培訓(xùn)(心臟驟停的臨床表現(xiàn)與診斷)
- 我的大學(xué)生活介紹
- XX單位2024年終專題組織生活會理論學(xué)習(xí)理論學(xué)習(xí)強黨性凝心聚力建新功
- 2024年XX單位個人述職述廉報告
- 一文解讀2025中央經(jīng)濟工作會議精神(使社會信心有效提振經(jīng)濟明顯回升)
- 2025職業(yè)生涯規(guī)劃報告自我評估職業(yè)探索目標(biāo)設(shè)定發(fā)展策略
- 2024年度XX縣縣委書記個人述職報告及2025年工作計劃
- 寒假計劃中學(xué)生寒假計劃安排表(規(guī)劃好寒假的每個階段)
- 中央經(jīng)濟工作會議九大看點學(xué)思想強黨性重實踐建新功