2020屆高考數學總復習 課時跟蹤練(四十六)專題探究課(四) 文(含解析)新人教A版

上傳人:Sc****h 文檔編號:116601651 上傳時間:2022-07-06 格式:DOC 頁數:7 大小:2.49MB
收藏 版權申訴 舉報 下載
2020屆高考數學總復習 課時跟蹤練(四十六)專題探究課(四) 文(含解析)新人教A版_第1頁
第1頁 / 共7頁
2020屆高考數學總復習 課時跟蹤練(四十六)專題探究課(四) 文(含解析)新人教A版_第2頁
第2頁 / 共7頁
2020屆高考數學總復習 課時跟蹤練(四十六)專題探究課(四) 文(含解析)新人教A版_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020屆高考數學總復習 課時跟蹤練(四十六)專題探究課(四) 文(含解析)新人教A版》由會員分享,可在線閱讀,更多相關《2020屆高考數學總復習 課時跟蹤練(四十六)專題探究課(四) 文(含解析)新人教A版(7頁珍藏版)》請在裝配圖網上搜索。

1、課時跟蹤練(四十六) A組 基礎鞏固 1.(2019·黃山模擬)如圖,四棱錐P-ABCD中,底面ABCD是矩形,平面PAD⊥底面ABCD,且△PAD是邊長的2的等邊三角形,PC=,M在PC上,且PA∥平面MBD. (1)求證:M是PC的中點; (2)求多面體PABMD的體積. (1)證明:連接AC交BD于點E,連接ME. 因為四邊形ABCD是矩形,所以E是AC的中點. 又PA∥平面MBD,且ME是平面PAC與平面MDB的交線, 所以PA∥ME,所以M是PC的中點. (2)解:取AD中點O,連接OC,PO,則PO⊥AD, 又平面PAD⊥底面ABCD,平面PAD∩平面A

2、BCD=AD,PO?平面PAD,所以PO⊥平面ABCD, 因為OC?平面ABCD,所以PO⊥OC,在Rt△POC中,PO=,PC=,則OC==,所以CD==3, 所以VP-ABCD=×2×3×=2, 由(1)知M到平面ABCD的距離等于點P到平面ABCD的距離的一半,為,所以VMBCD=××2×3×=, 所以V多面體PABMD=2-=. 2.如圖,直角三角形ABC中,A=60°,沿斜邊AC上的高BD將△ABD折起到△PBD的位置,點E在線段CD上. (1)求證:PE⊥BD; (2)過點D作DM⊥BC交BC于點M,點N為PB的中點,若PE∥平面DMN,求的值. (1)證明:因

3、為BD⊥PD,BD⊥CD,且PD∩CD=D,PD,CD?平面PCD, 所以BD⊥平面PCD. 又PE?平面PCD, 所以BD⊥PE. (2)解:由題意,得BM=BC. 取BC的中點F,連接PF、EF, 則PF∥MN. 又PF?平面DMN,MN?平面DMN, 所以PF∥平面DMN. 由條件PE∥平面DMN,PE∩PF=P, 所以平面PEF∥平面DMN,所以EF∥DM, 所以==. 3.(2017·全國卷Ⅲ)如圖,四面體ABCD中,△ABC是正三角形,AD=CD. (1)證明:AC⊥BD; (2)已知△ACD是直角三角形,AB=BD,若E為棱BD上與D不重合的點

4、,且AE⊥EC,求四面體ABCE與四面體ACDE的體積比. (1)證明:取AC的中點O, 連接DO,BO. 因為AD=CD,所以AC⊥DO. 又由于△ABC是正三角形,所以AC⊥BO. 從而AC⊥平面DOB, 故AC⊥BD. (2)解:如圖所示,連接EO, 由(1)及題設知∠ADC=90°,所以DO=AO. 在Rt△AOB中,BO2+AO2=AB2. 又AB=BD,所以BO2+DO2=BO2+AO2=AB2=BD2, 故∠DOB=90°. 由題設知△AEC為直角三角形,所以EO=AC. 又△ABC是正三角形,且AB=BD,所以EO=BD. 故E為BD的中點,從而

5、E到平面ABC的距離為D到平面ABC的距離的,四面體ABCE的體積為四面體ABCD的體積的,即四面體ABCE與四面體ACDE的體積之比為1∶1. 4.(2019·北京模擬)如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA=PD,PA⊥AB,N是棱AD的中點. (1)求證:平面PAB⊥平面PAD. (2)求證:PN⊥平面ABCD. (3)在棱BC上是否存在動點E,使得BN∥平面DEP?并說明理由. (1)證明:在矩形ABCD中,AB⊥AD. 又因為AB⊥PA且PA∩AD=A, 所以AB⊥平面PAD. 又因為AB?平面PAB, 所以平面PAB⊥平面PAD. (2)證明

6、:在△PAD中,PA=PD,N是棱AD的中點,所以PN⊥AD.由(1)知AB⊥平面PAD,所以AB⊥PN. 又因為AB∩AD=A,所以PN⊥平面ABCD. (3)解:在棱BC上存在點E,使得BN∥平面DEP,此時E為BC的中點. 證明如下: 取BC中點E,連接PE,DE. 在矩形ABCD中,ND∥BE,ND=BE. 所以四邊形BNDE是平行四邊形,則BN∥DE. 又因為BN?平面DEP,DE?平面DEP. 所以BN∥平面DEP. B組 素養(yǎng)提升 5.(2019·鄭州模擬)在如圖所示的五面體ABCDEF中,四邊形ABCD為菱形,且∠DAB=60°,EA=ED=AB=2EF

7、=2,EF∥AB,M為BC中點. (1)求證:FM∥平面BDE; (2)若平面ADE⊥平面ABCD,求F到平面BDE的距離. (1)證明:取BD中點O,連接OM,OE, 因為O,M分別為BD,BC中點, 所以OM∥CD,且OM=CD, 因為四邊形ABCD為菱形, 所以CD∥AB,因為EF∥AB, 所以CD∥EF,又AB=CD=2EF=2,所以EF=CD. 所以OM∥EF,且OM=EF, 所以四邊形OMFE為平行四邊形, 所以FM∥OE. 又OE?平面BDE且FM?平面BDE,所以FM∥平面BDE. (2)解:由(1)得FM∥平面BDE, 所以F到平面BDE的

8、距離等于M到平面BDE的距離. 取AD的中點H,連接EH,BH, 因為EA=ED,所以EH⊥AD, 因為平面ADE⊥平面ABCD, 平面ADE∩平面ABCD=AD, 所以EH⊥平面ABCD,因為BH?平面ABCD,所以EH⊥BH. 因為四邊形ABCD是菱形,所以AB=AD=2, 又∠BAD=60°,所以△ABD是等邊三角形,所以BH=.易得EH=. 在Rt△EHB中,因為EH=BH=, 所以BE=, 由已知,知△ABD是等邊三角形,所以BD=AB=ED=2,所以△BDE中斜邊BE上的高為 , 所以S△BDE=×× =, 設F到平面BDE的距離為h, 連接DM, 因為

9、S△BDM=××4=, 所以由VEBDM=VMBDE,得××=×h×, 解得h=. 即F到平面BDE的距離為. 6.(2018·天津卷)如圖,在四面體ABCD中,△ABC是等邊三角形,平面ABC⊥平面ABD,點M為棱AB的中點,AB=2,AD=2,∠BAD=90°. (1)求證:AD⊥BC; (2)求異面直線BC與MD所成角的余弦值; (3)求直線CD與平面ABD所成角的正弦值. (1)證明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC. (2)解:取棱AC的中點N,連接MN,ND. 又因為M為棱AB的中點,

10、所以MN∥BC. 所以∠DMN(或其補角)為異面直線BC與MD所成的角. 在Rt△DAN中,AM=1,故DM==. 因為AD⊥平面ABC,所以AD⊥AC. 在Rt△DAM中,AN=1,故DN==. 在等腰三角形DMN中,MN=1, 可得cos∠DMN==. 所以,異面直線BC與MD所成角的余弦值為. (3)解:連接CM.因為△ABC為等邊三角形,M為邊AB的中點,故CM⊥AB,CM=. 又因為平面ABC⊥平面ABD, 而CM?平面ABC,故CM⊥平面ABD, 所以,∠CDM為直線CD與平面ABD所成的角. 在Rt△CAD中,CD==4. 在Rt△CMD中,sin∠CDM==. 所以,直線CD與平面ABD所成角的正弦值為. 7

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!