2020高考數(shù)學刷題首選卷 第四章 數(shù)列 考點測試29 等差數(shù)列 文(含解析)

上傳人:Sc****h 文檔編號:119969086 上傳時間:2022-07-16 格式:DOCX 頁數(shù):9 大?。?46.53KB
收藏 版權(quán)申訴 舉報 下載
2020高考數(shù)學刷題首選卷 第四章 數(shù)列 考點測試29 等差數(shù)列 文(含解析)_第1頁
第1頁 / 共9頁
2020高考數(shù)學刷題首選卷 第四章 數(shù)列 考點測試29 等差數(shù)列 文(含解析)_第2頁
第2頁 / 共9頁
2020高考數(shù)學刷題首選卷 第四章 數(shù)列 考點測試29 等差數(shù)列 文(含解析)_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020高考數(shù)學刷題首選卷 第四章 數(shù)列 考點測試29 等差數(shù)列 文(含解析)》由會員分享,可在線閱讀,更多相關(guān)《2020高考數(shù)學刷題首選卷 第四章 數(shù)列 考點測試29 等差數(shù)列 文(含解析)(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、考點測試29 等差數(shù)列 高考概覽 本考點是高考必考知識點,??碱}型為選擇題、填空題和解答題,分值5分、12分,中、低等難度 考綱研讀 1.理解等差數(shù)列的概念 2.掌握等差數(shù)列的通項公式與前n項和公式 3.能在具體的問題情境中識別數(shù)列的等差關(guān)系,并能用有關(guān)知識解決相應的問題 4.了解等差數(shù)列與一次函數(shù)、二次函數(shù)的關(guān)系 一、基礎(chǔ)小題 1.已知{an}為等差數(shù)列,其前n項和為Sn,若a1=1,a3=5,Sn=64,則n=(  ) A.6 B.7 C.8 D.9 答案 C 解析 因為d==2,所以Sn=na1+d=n+n(n-1)=64,解得n=8.故選C. 2

2、.在等差數(shù)列{an}中,已知a3+a8=10,則3a5+a7=(  ) A.10 B.18 C.20 D.28 答案 C 解析 由題意可知a3+a8=a5+a6=10,所以3a5+a7=2a5+a5+a7=2a5+2a6=20,故選C. 3.已知Sn是數(shù)列{an}的前n項和,且Sn+1=Sn+an+3,a4+a5=23,則S8=(  ) A.72 B.88 C.92 D.98 答案 C 解析 由Sn+1=Sn+an+3得an+1-an=3,所以{an}為等差數(shù)列,公差為3,由a4+a5=23得2a1+7d=23,所以a1=1,S8=8+×8×7×3=92.故選C.

3、4.設(shè)Sn為等差數(shù)列{an}的前n項和,若a1=1,公差d=2,Sk+2-Sk=24,則k=(  ) A.8 B.7 C.6 D.5 答案 D 解析 由a1=1,公差d=2,得通項an=2n-1,又Sk+2-Sk=ak+1+ak+2,所以2k+1+2k+3=24,解得k=5.故選D. 5.已知等差數(shù)列{an}的前n項和為Sn,若a2+a8+a11=30,則S13=(  ) A.130 B.65 C.70 D.140 答案 A 解析 設(shè)等差數(shù)列{an}的首項為a1,公差為d,由a2+a8+a11=30,可得a1+6d=10,故S13==13(a1+6d)=130.故選A

4、. 6.設(shè){an}是公差不為0的等差數(shù)列,且a+a=a+a,則該數(shù)列的前10項和S10=(  ) A.-10 B.-5 C.0 D.5 答案 C 解析 由a+a=a+a得a-a=a-a,即(a4-a6)(a4+a6)=(a7-a5)(a7+a5),也即-2d×2a5=2d×2a6,由d≠0,得a6+a5=a1+a10=0,所以S10=5(a1+a10)=0.故選C. 7.在等差數(shù)列{an}中,已知S4=1,S8=4,設(shè)S=a17+a18+a19+a20,則S的值為(  ) A.8 B.9 C.10 D.11 答案 B 解析 由S4=1,S8=4得S8-S4=3,所以

5、S12-S8=5,所以S16-S12=7,所以S=S20-S16=9.故選B. 8.等差數(shù)列{an}的前n項和為Sn.已知am-1+am+1-a=0,S2m-1=38,則m=________. 答案 10 解析 因為am-1+am+1-a=0,數(shù)列{an}是等差數(shù)列,所以2am-a=0,解得am=0或am=2.又S2m-1=38,所以am=0不符合題意,所以am=2.所以S2m-1==(2m-1)am=38,解得m=10. 二、高考小題 9.(2018·全國卷Ⅰ)設(shè)Sn為等差數(shù)列{an}的前n項和,若3S3=S2+S4,a1=2,則a5=(  ) A.-12 B.-10 C.1

6、0 D.12 答案 B 解析 設(shè)該等差數(shù)列的公差為d,根據(jù)題中的條件可得3×=2×2+d+4×2+·d,解得d=-3,所以a5=a1+4d=2-12=-10,故選B. 10.(2017·全國卷Ⅰ)記Sn為等差數(shù)列{an}的前n項和.若a4+a5=24,S6=48,則{an}的公差為(  ) A.1 B.2 C.4 D.8 答案 C 解析 在等差數(shù)列{an}中,S6==48,則a1+a6=16=a2+a5.又a4+a5=24,所以a4-a2=2d=24-16=8,得d=4.故選C. 11.(2017·全國卷Ⅲ)等差數(shù)列{an}的首項為1,公差不為0.若a2,a3,a6成等比

7、數(shù)列,則{an}前6項的和為(  ) A.-24 B.-3 C.3 D.8 答案 A 解析 設(shè)等差數(shù)列{an}的公差為d,依題意得a=a2·a6,即(1+2d)2=(1+d)(1+5d),解得d=-2或d=0(舍去),又a1=1,所以S6=6×1+×(-2)=-24.故選A. 12.(2016·全國卷Ⅰ)已知等差數(shù)列{an}前9項的和為27,a10=8,則a100=(  ) A.100 B.99 C.98 D.97 答案 C 解析 設(shè){an}的公差為d,由等差數(shù)列的前n項和公式及通項公式,得解得an=a1+(n-1)d=n-2,所以a100=100-2=98.故選C.

8、 13.(2018·北京高考)設(shè){an}是等差數(shù)列,且a1=3,a2+a5=36,則{an}的通項公式為________. 答案 an=6n-3 解析 設(shè)等差數(shù)列{an}的公差為d,則a2+a5=a1+d+a1+4d=2a1+5d=6+5d=36,∴d=6,∴an=a1+(n-1)d=3+6(n-1)=6n-3. 14.(2016·江蘇高考)已知{an}是等差數(shù)列,Sn是其前n項和.若a1+a=-3,S5=10,則a9的值是________. 答案 20 解析 設(shè)等差數(shù)列{an}的公差為d,則由題設(shè)可得 解得從而a9=a1+8d=20. 三、模擬小題 15.(2018·深圳4

9、月調(diào)研)設(shè)Sn為等差數(shù)列{an}的前n項和,已知a1=S3=3,則S4的值為(  ) A.-3 B.0 C.3 D.6 答案 B 解析 解法一:由S3=3a2=3,得a2=1,又a1=3,則公差d=-2,故S4=a1+a2+a3+a4=3+1+(-1)+(-3)=0,故選B. 解法二:a2+a3=S3-a1=0,則S4=2(a2+a3)=0,故選B. 16.(2018·青島質(zhì)檢)已知公差不為0的等差數(shù)列{an}的前n項和為Sn,若a6=3a4,且S9=λa4,則λ的值為(  ) A.18 B.20 C.21 D.25 答案 A 解析 設(shè)等差數(shù)列{an}的首項為a1,

10、公差為d.由a6=3a4,得a1+5d=3(a1+3d),所以a1=-2d.由S9=λa4,得9a1+36d=λ(a1+3d),代入a1=-2d,得λ=18.故選A. 17.(2018·沈陽質(zhì)檢一)在等差數(shù)列{an}中,若Sn為其前n項和,2a7=a8+5,則S11的值是(  ) A.55 B.11 C.50 D.60 答案 A 解析 依題意有a7-(a8-a7)=5,即a7-d=5(d為{an}的公差),亦即a6=5.從而S11=11a6=11×5=55.故選A. 18.(2018·安徽江南十校模擬)《九章算術(shù)》是我國古代的數(shù)學名著,書中《均屬章》有如下問題:“今有五人分五錢

11、,令上二人所得與下三人等.問各得幾何.”其意思為“已知A,B,C,D,E五人分5錢,A,B兩人所得與C,D,E三人所得相同,且A,B,C,D,E每人所得依次成等差數(shù)列.問五人各得多少錢?”(“錢”是古代的一種重量單位).在這個問題中,E所得為(  ) A.錢 B.錢 C.錢 D.錢 答案 A 解析 由題意,設(shè)A所得為a-4d,B所得為a-3d,C所得為a-2d,D所得為a-d,E所得為a,則解得a=,故E所得為錢.故選A. 19.(2018·衡陽二模)已知在等差數(shù)列{an}中,-1<<0,若它的前n項和Sn有最大值,則當Sn>0時,n的最大值為(  ) A.11 B.12

12、C.13 D.14 答案 B 解析 由數(shù)列{an}為等差數(shù)列,且它的前n項和Sn有最大值,可得d<0.因為-1<<0,由<0,得a6>0,a7<0,由>-1,得>0,所以a6+a7>0,所以a1+a12>0,所以S12>0,又S13=13a7<0,則當Sn>0時,n的最大值為12,故選B. 20.(2018·合肥質(zhì)檢三)已知數(shù)列{an}的前n項和為Sn,且數(shù)列為等差數(shù)列,若S2=1,S2018-S2016=5,則S2018=________. 答案 3027 解析 依題意,設(shè)=xn+y(x,y∈R),則==2x+y,且S2018-S2016=20182x+2018y-(20162x

13、+2016y)=5,聯(lián)立可解得x=,y=.則Sn=n2+n,S2018=3027. 一、高考大題 1.(2018·全國卷Ⅱ)記Sn為等差數(shù)列{an}的前n項和,已知a1=-7,S3=-15. (1)求{an}的通項公式; (2)求Sn,并求Sn的最小值. 解 (1)設(shè){an}的公差為d,由題意,得3a1+3d=-15. 由a1=-7,得d=2. 所以{an}的通項公式為an=-7+(n-1)×2=2n-9. (2)由(1),得Sn=n×(-7)+×2=n2-8n=(n-4)2-16. 所以當n=4時,Sn取得最小值,最小值為-16. 2.(2018·北京高考)設(shè){an}

14、是等差數(shù)列,且a1=ln 2,a2+a3=5ln 2. (1)求{an}的通項公式; (2)求ea1+ea2+…+ean. 解 (1)設(shè){an}的公差為d. 因為a2+a3=5ln 2,所以2a1+3d=5ln 2. 又a1=ln 2,所以d=ln 2. 所以an=a1+(n-1)d=nln 2. (2)因為ea1=eln 2=2,=ean-an-1=eln 2=2, 所以{ean}是首項為2,公比為2的等比數(shù)列. 所以ea1+ea2+…+ean=2×=2(2n-1)=2n+1-2. 3.(2017·全國卷Ⅰ)記Sn為等比數(shù)列{an}的前n項和.已知S2=2,S3=-6.

15、 (1)求{an}的通項公式; (2)求Sn,并判斷Sn+1,Sn,Sn+2是否成等差數(shù)列. 解 (1)設(shè){an}的公比為q,由題設(shè)可得 解得q=-2,a1=-2. 故{an}的通項公式為an=(-2)n. (2)由(1)可得Sn==-+(-1)n·. 由于Sn+2+Sn+1=-+(-1)n· =2-+(-1)n·=2Sn, 故Sn+1,Sn,Sn+2成等差數(shù)列. 二、模擬大題 4.(2018·福建龍巖檢測)已知數(shù)列{an}滿足(an+1-1)·(an-1)=3(an-an+1),a1=2,令bn=. (1)證明:數(shù)列{bn}是等差數(shù)列; (2)求數(shù)列{an}的通項

16、公式. 解 (1)證明:-= =,∴bn+1-bn=,∴數(shù)列{bn}是等差數(shù)列. (2)由(1)及b1===1,知bn=n+, ∴an-1=,∴an=. 5.(2018·福建外國語中學調(diào)研)已知等差數(shù)列{an}的公差d>0,前n項和為Sn,且a2·a3=45,S4=28. (1)求數(shù)列{an}的通項公式; (2)若bn=(c為非零常數(shù)),且數(shù)列{bn}也是等差數(shù)列,求c的值. 解 (1)∵S4=28,∴=28, ∴a1+a4=14,∴a2+a3=14, 又a2·a3=45,公差d>0, ∴a2

17、Sn=2n2-n,∴bn==, ∴b1=,b2=,b3=. 又{bn}是等差數(shù)列, ∴b1+b3=2b2, 即2×=+, 解得c=-(c=0舍去). 6.(2019·河南鄭州質(zhì)檢)在數(shù)列{an}中,an+1+an=2n-44(n∈N*),a1=-23. (1)求an; (2)設(shè)Sn為{an}的前n項和,求Sn的最小值. 解 (1)∵an+1+an=2n-44(n∈N*),① an+2+an+1=2(n+1)-44,② 由②-①,得an+2-an=2. 又∵a2+a1=2-44,a1=-23,∴a2=-19, 同理得,a3=-21,a4=-17. 故a1,a3,a5,

18、…是以a1為首項,2為公差的等差數(shù)列,a2,a4,a6,…是以a2為首項,2為公差的等差數(shù)列. 從而an= (2)當n為偶數(shù)時, Sn=(a1+a2)+(a3+a4)+…+(an-1+an) =(2×1-44)+(2×3-44)+…+[2(n-1)-44] =2[1+3+…+(n-1)]-×44=-22n, 故當n=22時,Sn取得最小值為-242. 當n為奇數(shù)時, Sn=a1+(a2+a3)+(a4+a5)+…+(an-1+an) =a1+(2×2-44)+…+[2×(n-1)-44] =a1+2[2+4+…+(n-1)]+·(-44) =-23+-22(n-1) =-22n-. 故當n=21或n=23時,Sn取得最小值-243. 綜上所述:當n為偶數(shù)時,Sn取得最小值為-242;當n為奇數(shù)時,Sn取得最小值為-243. 9

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!