人教高中數(shù)學(xué) 選修2-3 第一章 1.2.1排列(優(yōu)質(zhì)公開(kāi)課教案)

上傳人:gui****hi 文檔編號(hào):132622945 上傳時(shí)間:2022-08-08 格式:DOCX 頁(yè)數(shù):4 大?。?40.99KB
收藏 版權(quán)申訴 舉報(bào) 下載
人教高中數(shù)學(xué) 選修2-3 第一章 1.2.1排列(優(yōu)質(zhì)公開(kāi)課教案)_第1頁(yè)
第1頁(yè) / 共4頁(yè)
人教高中數(shù)學(xué) 選修2-3 第一章 1.2.1排列(優(yōu)質(zhì)公開(kāi)課教案)_第2頁(yè)
第2頁(yè) / 共4頁(yè)
人教高中數(shù)學(xué) 選修2-3 第一章 1.2.1排列(優(yōu)質(zhì)公開(kāi)課教案)_第3頁(yè)
第3頁(yè) / 共4頁(yè)

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《人教高中數(shù)學(xué) 選修2-3 第一章 1.2.1排列(優(yōu)質(zhì)公開(kāi)課教案)》由會(huì)員分享,可在線閱讀,更多相關(guān)《人教高中數(shù)學(xué) 選修2-3 第一章 1.2.1排列(優(yōu)質(zhì)公開(kāi)課教案)(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 ?n?種不同的方法 1.2.1?排列 上課班別:高二 授課教師: 教材:人教版?選修?2—3 教學(xué)目標(biāo): 1、知識(shí)與技能:了解排列數(shù)的意義,掌握排列數(shù)公式及推導(dǎo)方法,從中體會(huì)“化歸”的數(shù)學(xué)思想, 并能運(yùn)用排列數(shù)公式進(jìn)行計(jì)算。 2、過(guò)程與方法:能運(yùn)用所學(xué)的排列知識(shí),正確地解決的實(shí)際問(wèn)題 3、情感、態(tài)度與價(jià)值觀:能運(yùn)用所學(xué)的排列知識(shí),正確地解決的實(shí)際問(wèn)題. 教學(xué)重點(diǎn):排列數(shù)公式的理解與運(yùn)用;排列應(yīng)用題常用的方法有直接法,間接法 教學(xué)難點(diǎn):排列數(shù)公式的推導(dǎo) 授課類(lèi)型:新授課 課時(shí)安排:1?課時(shí) 教 具:多媒體 內(nèi)容分析: 分類(lèi)計(jì)數(shù)原理是對(duì)完成一件

2、事的所有方法的一個(gè)劃分,依分類(lèi)計(jì)數(shù)原理解題,首先明確要做的 這件事是什么,其次分類(lèi)時(shí)要根據(jù)問(wèn)題的特點(diǎn)確定分類(lèi)的標(biāo)準(zhǔn),最后在確定的標(biāo)準(zhǔn)下進(jìn)行分類(lèi).分 類(lèi)要注意不重復(fù)、不遺漏,保證每類(lèi)辦法都能完成這件事.分步計(jì)數(shù)原理是指完成一件事的任何方 法要按照一定的標(biāo)準(zhǔn)分成幾個(gè)步驟,必須且只需連續(xù)完成這幾個(gè)步驟后才算完成這件事,每步中的 任何一種方法都不能完成這件事.分類(lèi)計(jì)數(shù)原理和分步計(jì)數(shù)原理的地位是有區(qū)別的,分類(lèi)計(jì)數(shù)原理 更具有一般性,解決復(fù)雜問(wèn)題時(shí)往往需要先分類(lèi),每類(lèi)中再分成幾步.在排列、組合教學(xué)的起始階 段,不能嫌羅嗦,教師一定要先做出表率并要求學(xué)生嚴(yán)格按原理去分析問(wèn)題.?只有這樣才能使學(xué)生

3、 認(rèn)識(shí)深刻、理解到位、思路清晰,才會(huì)做到分類(lèi)有據(jù)、分步有方,為排列、組合的學(xué)習(xí)奠定堅(jiān)實(shí)的 基礎(chǔ) 分類(lèi)計(jì)數(shù)原理和分步計(jì)數(shù)原理既是推導(dǎo)排列數(shù)公式、組合數(shù)公式的基礎(chǔ),也是解決排列、組合 問(wèn)題的主要依據(jù),并且還常需要直接運(yùn)用它們?nèi)ソ鉀Q問(wèn)題,這兩個(gè)原理貫穿排列、組合學(xué)習(xí)過(guò)程的 始終.搞好排列、組合問(wèn)題的教學(xué)從這兩個(gè)原理入手帶有根本性. 排列與組合都是研究從一些不同元素中任取元素,或排成一排或并成一組,并求有多少種不同 方法的問(wèn)題.排列與組合的區(qū)別在于問(wèn)題是否與順序有關(guān).與順序有關(guān)的是排列問(wèn)題,與順序無(wú)關(guān)是 組合問(wèn)題,順序?qū)ε帕小⒔M合問(wèn)題的求解特別重要.排列與組合的區(qū)別,從定義上來(lái)說(shuō)是簡(jiǎn)單

4、的, 但在具體求解過(guò)程中學(xué)生往往感到困惑,分不清到底與順序有無(wú)關(guān)系. 教學(xué)過(guò)程: 一、復(fù)習(xí)引入: 1?分類(lèi)加法計(jì)數(shù)原理:做一件事情,完成它可以有?n?類(lèi)辦法,在第一類(lèi)辦法中有m?種不同 1 的方法,在第二類(lèi)辦法中有?m?種不同的方法,……,在第?n?類(lèi)辦法中有?m?種不同的方法?那么 2 n 完成這件事共有?N?=?m?+?m?+ +?m 1 2 2.分步乘法計(jì)數(shù)原理:做一件事情,完成它需要分成?n?個(gè)步驟,做第一步有?m?種不同的方 1 法,做第二步有?m?種不同的方法,……,做第?n?步有?m?種不同的方法,那么完成這件事有 2 n 第?

5、1?頁(yè) N?=?m?′?m?′ ′?m 1 2 n??種不同的方法 二、講解新課: 問(wèn)題?1.從甲、乙、丙?3?名同學(xué)中選取?2?名同學(xué)參加某一天的一項(xiàng)活動(dòng),其中一名同學(xué)參加 上午的活動(dòng),一名同學(xué)參加下午的活動(dòng),有多少種不同的方法? 圖?1.2?一?1 把上面問(wèn)題中被取的對(duì)象叫做元素,于是問(wèn)題可敘述為:從?3?個(gè)不同的元素?a?,?b?,。中 任取?2?個(gè),然后按照一定的順序排成一列,一共有多少種不同的排列方法?所有不同的排列是 ab,ac,ba,bc,ca,?cb,

6、 共有?3×2=6?種. 問(wèn)題?2.從?1,2,3,4?這?4?個(gè)數(shù)字中,每次取出?3?個(gè)排成一個(gè)三位數(shù),共可得到多少個(gè)不同 的三位數(shù)? 第?1?步,確定百位上的數(shù)字,在?1?,?2?,?3?,?4這?4?個(gè)數(shù)字中任取?1?個(gè),有?4?種方法; 第?2?步,確定十位上的數(shù)字,當(dāng)百位上的數(shù)字確定后,十位上的數(shù)字只能從余下的?3?個(gè) 數(shù)字中去取,有?3?種方法; 第?3?步,確定個(gè)位上的數(shù)字,當(dāng)百位、十位上的數(shù)字確定后,個(gè)位的數(shù)字只能從余下的?2 個(gè)數(shù)字中去取,有?2?種方法. 根據(jù)分步乘法計(jì)數(shù)原理,從?1?,?2?,?3?,?4?這?4?個(gè)不同的數(shù)字中,每次取出?3?個(gè)數(shù)字,

7、按“百”“十”“個(gè)”位的順序排成一列,共有 4×3×2=24 種不同的排法,?因而共可得到?24?個(gè)不同的三位數(shù),如圖?1.?2?一?2?所示. 由此可寫(xiě)出所有的三位數(shù): 123,124,?132,?134,?142,?143, 213,214,?231,?234,?241,?243, 312,314,?321,?324,?341,?342, 412,413,?421,?423,?431,?432?。 同樣,問(wèn)題?2?可以歸結(jié)為: 從?4?個(gè)不同的元素?a,?b,?c,d?中任取?3?個(gè),然后按照一定的順序排成一

8、列,共有多少種 第?2?頁(yè) 不同的排列方法? 所有不同排列是 abc,?abd,?acb,?acd,?adb,?adc,bac,?bad,?bca,?bcd,?bda,?bdc, cab,?cad,?cba,?cbd,?cda,?cdb,dab,?dac,?dba,?dbc,?dca,?dcb. 共有?4×3×2=24?種. 樹(shù)形圖如下 a b c d b c d a c d a b d a b c 2.排列的概念: 從?n?個(gè)不同元素中,任取?m?(?m?£?n?)個(gè)元素(這里的被取元素各不相同)按照一定的順 序

9、排成一列,叫做從?n?個(gè)不同元素中取出?m?個(gè)元素的一個(gè)排列 ( 說(shuō)明:?1)排列的定義包括兩個(gè)方面:①取出元素,②按一定的順序排列; (2)兩個(gè)排列相同的條件:①元素完全相同,②元素的排列順序也相同 3.排列數(shù)的定義: 從?n?個(gè)不同元素中,任取?m(?m?£?n?)個(gè)元素的所有排列的個(gè)數(shù)叫做從?n?個(gè)元素中取出?m?元 素的排列數(shù),用符號(hào)?Am?表示 n “ 注意區(qū)別排列和排列數(shù)的不同:“一個(gè)排列”是指:從?n?個(gè)不同元素中,任取?m?個(gè)元素按照 一定的順序排成一列,不是數(shù);?排列數(shù)”是指從?n?個(gè)不同元素中,任取?m?(?m?£?n?)個(gè)元素的 所有排列的個(gè)

10、數(shù),是一個(gè)數(shù)?所以符號(hào)?Am?只表示排列數(shù),而不表示具體的排列 n 4.排列數(shù)公式及其推導(dǎo): 求?A3?可以按依次填?3?個(gè)空位來(lái)考慮,∴?A3?=?n(n?-?1)(n?-?2)?, n n 求?Am?以按依次填?m?個(gè)空位來(lái)考慮?Am?=?n(n?-?1)(n?-?2) n n (n?-?m?+?1)?, 排列數(shù)公式: Am?=?n(n?-?1)(n?-?2) (n?-?m?+?1) n (?m,?n???N?*,?m?£?n?) ( 說(shuō)明:?1)公式特征:第一個(gè)因數(shù)是?n?,后面每一個(gè)因數(shù)比它前面一個(gè) 少?1,最后

11、一個(gè)因數(shù)是?n?-?m?+?1?,共有?m?個(gè)因數(shù); (2)全排列:當(dāng)?n?=?m?時(shí)即?n?個(gè)不同元素全部取出的一個(gè)排列 全排列數(shù):?An?=?n(n?-?1)(n?-?2) 2?×1?=?n?!?(叫做?n?的階乘) n 另外,我們規(guī)定?0!?=1?. Am?= n An n An-m n-m  = n! (n?-?m)!  . 第?3?頁(yè) 例?7.(課本例?2).某年全國(guó)足球甲級(jí)(A?組)聯(lián)賽共有?14?個(gè)隊(duì)參加,每隊(duì)要與其余各隊(duì)在 主、客場(chǎng)分別比賽一次,共進(jìn)行多少場(chǎng)比賽? 解:任意兩隊(duì)間

12、進(jìn)行?1?次主場(chǎng)比賽與?1?次客場(chǎng)比賽,對(duì)應(yīng)于從?14?個(gè)元素中任取?2?個(gè)元素 的一個(gè)排列.因此,比賽的總場(chǎng)次是?A2?=14×13=182. 14 例?8.?(1)從?5?本不同的書(shū)中選?3?本送給?3?名同學(xué),每人各?1?本,有多少種不同的送法? (2)從?5?種不同的書(shū)中買(mǎi)?3?本送給?3?名同學(xué),每人各?1?本,共有多少種不同的送法? 解:(1)從?5?本不同的書(shū)中選出?3?本分別送給?3?名同學(xué),對(duì)應(yīng)于從?5?個(gè)不同元素中任取?3?個(gè) 元素的一個(gè)排列,因此不同送法的種數(shù)是 A3?=5×4×3=60. 5 (2)由于有?5?種不同的書(shū),送給每個(gè)同學(xué)的

13、?1?本書(shū)都有?5?種不同的選購(gòu)方法,因此送給?3 名同學(xué)每人各?1?本書(shū)的不同方法種數(shù)是 5×5×5=125. 例?8?中兩個(gè)問(wèn)題的區(qū)別在于:?(?1?)是從?5?本不同的書(shū)中選出?3?本分送?3?名同學(xué),各 人得到的書(shū)不同,屬于求排列數(shù)問(wèn)題;而(?2?)中,由于不同的人得到的書(shū)可能相同,因此不 符合使用排列數(shù)公式的條件,只能用分步乘法計(jì)數(shù)原理進(jìn)行計(jì)算. 例?9.(課本例?4).用?0?到?9?這?10?個(gè)數(shù)字,可以組成多少個(gè)沒(méi)有重復(fù)數(shù)字的三位數(shù)?分析: 在本問(wèn)題的。到?9?這?10?個(gè)數(shù)字中,因?yàn)?。不能排在百位上,而其他?shù)可以排在任意位置上, 因此。是一個(gè)特殊的元素.一般的

14、,我們可以從特殊元素的排列位置人手來(lái)考慮問(wèn)題 解法?1?:由于在沒(méi)有重復(fù)數(shù)字的三位數(shù)中,百位上 的數(shù)字不能是?O,因此可以分兩步完成排列.第?1?步,排 百位上的數(shù)字,可以從?1?到?9?這九個(gè)數(shù)字中任選?1?個(gè), 有?A1?種選法;第?2?步,排十位和個(gè)位上的數(shù)字,可以從 9 余下的?9?個(gè)數(shù)字中任選?2?個(gè),有?A2?種選法(圖?1.2?一 9 5)?.根據(jù)分步乘法計(jì)數(shù)原理,所求的三位數(shù)有 A1?A2?=9×9×8=648(個(gè))?. 9 9 解法?2:從?0?到?9?這?10?個(gè)數(shù)字中任取?3?個(gè)數(shù)字的排列數(shù)為?A3?,其中?O?在百位上的排列數(shù)

15、 10 是?A2?,它們的差就是用這?10?個(gè)數(shù)字組成的沒(méi)有重復(fù)數(shù)字的三位數(shù)的個(gè)數(shù), 9 A3?-?A2?=10×9×8-9×8=648. 10 9 鞏固練習(xí):書(shū)本?20?頁(yè)1,3,5,6 課外作業(yè):第?27?頁(yè) 習(xí)題?1.2 A?組,4,5,6,7 教學(xué)反思: 排列的特征:一個(gè)是“取出元素”;二是“按照一定順序排列”?,“一定順序”就是與位 置有關(guān),這也是判斷一個(gè)問(wèn)題是不是排列問(wèn)題的重要標(biāo)志。根據(jù)排列的定義,兩個(gè)排列相同, 且僅當(dāng)兩個(gè)排列的元素完全相同,而且元素的排列順序也相同?.?了解排列數(shù)的意義,掌握排列 數(shù)公式及推導(dǎo)方法,從中體會(huì)“化歸”的數(shù)學(xué)思想,并能運(yùn)用排列數(shù)公式進(jìn)行計(jì)算。 第?4?頁(yè)

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!