《2012高考物理單元卷 動量、動量守恒定律及應用》由會員分享,可在線閱讀,更多相關《2012高考物理單元卷 動量、動量守恒定律及應用(8頁珍藏版)》請在裝配圖網上搜索。
1、
第七模塊 第15章 第1單元
一、選擇題
1.(2009年臺灣自然高考)神舟七號宇宙飛船的航天員在準備出艙進行太空漫步時,意外發(fā)現艙門很難打開,有人臆測這可能與光壓有關.已知光子的動能p、能量E與光速c的關系為E=pc,假設艙門的面積為1.0 m2,每平方公尺的艙門上每秒入射的光子能量為1.5 kJ,則艙門因反射光子而承受的力,最大約為多少牛頓?
( )
A.0.5×10-5 B.1.0×10-5
C.0.5×10-2 D.1.0×10-3
解析:平方公尺即為平方米.光子被艙門反射前后,光子動量變化量最大為Δp=2p(垂直入射與反射時),又因
2、為E=pc,即對應于光子入射的能量為E時光子的動量改變量為Δp=,取Δt時間內入射的所有光子作為研究對象,由題意知Δt內與艙門發(fā)生作用的光子總能量為E總=Δt×1.5 kJ,根據動量定理FΔt=Δp總有F===,則:F=N=1.0×10-5N,B正確.
圖10
答案:B
2.(2009年江蘇南通)用不可伸長的細線懸掛一質量為M的小木塊,木塊靜止,如圖10所示.現有一質量為m的子彈自左方水平射向木塊,并停留在木塊中,子彈初速度為v0,則下列判斷正確的是
( )
A.從子彈射向木塊到一起上升到最高點的過程中系統(tǒng)的機械能守恒
B.子彈射入木塊瞬間動量守恒,故子彈射入木塊瞬間子彈和木
3、塊的共同速度為
C.忽略空氣阻力,子彈和木塊一起上升過程中系統(tǒng)機械能守恒,其機械能等于子彈射入木塊前的動能
D.子彈和木塊一起上升的最大高度為
解析:從子彈射向木塊到一起運動到最高點的過程可以分為兩個階段:子彈射入木塊的瞬間系統(tǒng)動量守恒,但機械能不守恒,有部分機械能轉化為系統(tǒng)內能,之后子彈在木塊中與木塊一起上升,該過程只有重力做功,機械能守恒但總能量小于子彈射入木塊前的動能,因此A、C錯誤;由子彈射入木塊瞬間動量守恒可得子彈射入木塊后的共同速度為,B正確;之后子彈和木塊一起上升,該階段機械能守恒可得上升的最大高度為,D正確.
答案:BD
二、計算題
圖11
3.如圖11所示,
4、一個質量為m=60 kg的人拽著一個氫氣球的軟繩,軟繩的下端剛好與地面接觸,此時人距地面的高度h=60 m,氣球與軟繩質量M=120 kg,整個系統(tǒng)處于平衡,現此人沿軟繩向下滑,問他能否安全回到地面?
解析:當人到達軟繩的末端時,軟繩已離開地面一段高度H,人能否安全到達地面決定于H的大?。?
由人船模型得:m(h-H)=MH
解得:H== m=20 m
人要回到地面得從20米高的地方跳下來,這是很危險的.所以不能.
答案:不能
4.(2008年山東)一個物體靜置于光滑水平面上,外面扣一質量為M的盒子,如圖(1)所示.現給盒子一初速度v0,此后,盒子運動的v-t圖象呈周期性變化,如圖(
5、2)所示.請據此求盒內物體的質量.
圖12
解析:設物體的質量為m,t0時刻受盒子碰撞獲得速度v,根據動量守恒定律
Mv0=mv,①
3t0時刻物體與盒子右壁碰撞使盒子速度又變?yōu)関0,說明碰撞是彈性碰撞
mv=mv2,②
聯立①②解得m=M.
(也可通過圖象分析得出v0=v,結合動量守恒,得出正確結果)
圖13
答案:M
5.如圖13所示,國際花樣滑冰錦標賽男女雙人自由滑項目中,我國著名選手申雪、趙宏博在決賽中的一個瞬間,他們正以相同的速度v0在光滑冰面上前進,當趙宏博用力將申雪向后推出后,申雪單腿沿直線勻速運動后繼而做出優(yōu)美的旋轉動作,若趙宏博以相對自己的速度v向
6、后推出申雪,問趙宏博的速度變?yōu)槎啻螅?設趙宏博的質量為M,申雪的質量為m)?
解析:設他們前進的方向為正方向,以冰面為參考系,推出后,趙宏博的動量為Mv男,申雪相對冰面的速度為-(v-v男),根據動量守恒定律得:
(M+m)v0=Mv男-m(v-v男)
解得v男=v0+.
答案:v0+
6.質量是1 kg的鋼球,以5 m/s的速度水平向右運動,碰到墻壁后以3 m/s的速度被反向彈回,鋼球的動量改變多少?
如鋼球以2m/s的速度,與水平面成30°角落到粗糙地面相碰后彈起,彈起速度大小為2 m/s,方向與水平面成60°角,判別鋼球的動量改變量的方向.
解析:第一種情況:取水平向右為正
7、方向.鋼球碰前的動量為:p1=mv1=5 kg·m/s
碰后的動量為:p2=mv2=-3 kg·m/s
動量變化量為:Δp=p2-p1=(-3-5)kg·m/s=-8 kg·m/s
負號表示方向水平向左
圖14
第二種情況:p1、p2的大小分別為2 kg·m/s和2 kg·m/s,方向如圖14所示,由圖所示平行四邊形可得Δp的大小和方向.
大?。害=
= kg·m/s
=4 kg·m/s
方向:與豎直方向成30°角
答案:8 kg·m/s,方向水平向左4 kg·m/s,與豎直方向成30°角
7.甲、乙兩小船質量均為M=120 kg,靜止于水面上,甲船上的人質量m=6
8、0 kg,通過一根長為L=10 m的繩用F=120 N的水平力拉乙船,求:
(1)兩船相遇時,兩船分別走了多少距離.
(2)為防止兩船相撞,人至少以多大的速度跳離甲船.(忽略水的阻力)
解析:(1)甲船和人與乙船組成的系統(tǒng)動量時刻守恒.
由平均動量守恒得:(M+m)x甲=Mx乙
又x甲+x乙=L
以上兩式聯立可求得:x甲=4 m,x乙=6 m.
(2)設兩船相遇時甲船的速度為v1,對甲船和人用動能定理得:
Fx甲=(M+m)v
因系統(tǒng)總動量為零,所以人跳離甲后,甲速度為零時,人跳離速度最小,設人跳離的速度為v,因跳離時,甲船和人組成的系統(tǒng)動量守恒,有:(M+m)v1=0+mv
9、可求得:v=4m/s.
答案:(1)4 m 6 m (2)4m/s
圖15
8.人在平板車上用水平恒力拉繩使重物能靠攏自己,如圖15所示,人相對車始終不動,重物與平板車之間,平板車與地面之間均無摩擦.設開始拉重物時車和重物都是靜止的,車和人的總質量為M=100 kg,重物質量m=50 kg,拉力F=20 N,重物在車上向人靠攏了3 m.求:
(1)車在地面上移動的距離.
(2)這時車和重物的速度.
解析:(1)設重物在車上向人靠攏L=3 m,車在地面上移動距離為x,依題意有m(L-x)=Mx
整理得:x=1 m
(2)人和車的加速度為a===2 m/s2
則人和車在地面上
10、移動1 m時的速度為
v==2 m/s
此時物體的對地速度為v物,依據mv物=Mv
得v物=4 m/s
答案:(1)1 m (2)2 m/s 4 m/s
9.兩磁鐵各放在一輛小車上,小車能在水平面上無摩擦地沿同一直線運動.已知甲車和磁鐵的總質量為0.5 kg,乙車和磁鐵的總質量為1.0 kg.兩磁鐵的N極相對,推動一下,使兩車相向運動.某時刻甲的速率為2 m/s,乙的速率為3 m/s方向與甲相反.兩車運動過程中始終未相碰.求:
(1)兩車最近時,乙的速度為多大?
(2)甲車開始反向運動時,乙的速度為多大?
解析:(1)兩車相距最近時,兩車的速度相同,設該速度為v,取乙車的速度方
11、向為正方向.由動量守恒定律得
m乙v乙-m甲v甲=(m甲+m乙)v
所以兩車最近時,乙車的速度為
v=
=m/s=m/s=1.33 m/s
(2)甲車開始反向時,其速度為0,設此時乙車的速度為v乙′,由動量守恒定律得m乙v乙-m甲v甲=m乙v乙′
得v乙′==m/s=2 m/s.
答案:(1)1.33 m/s (2)2 m/s
圖16
10.如圖16為一空間探測器的示意圖,P1、P2、P3、P4是四個噴氣發(fā)動機,P1、P3的連線與空間一固定坐標系的x軸平行,P2、P4的連線與y軸平行.每臺發(fā)動機噴氣時,都能向探測器提供推力,但不會使探測器轉動,開始時,探測器相對于坐標系以
12、恒定的速率v0沿正x方向平動.先開動P1,使P1在極短時間內一次性噴出質量為m的氣體,氣體噴出時相對于坐標系的速度大小為v.然后開動P2,使P2在極短的時間內一次性噴出質量為m的氣體,氣體噴出時相對坐標系的速度大小為v.此時探測器的速度大小為2v0,且方向沿正y方向.假設探測器的總質量為M(包括氣體的質量),求每次噴出氣體的質量m與探測器總質量M的比值和每次噴出氣體的速度v與v0的比值.
解析:探測器第一次噴出氣體時,沿x方向動量守恒,且探測器速度變?yōu)榱悖?
即Mv0=mv①
第二次噴出氣體時,沿y方向動量守恒:
0=(M-2m)·2v0-mv②
解①②得:=,=
答案: 4
13、圖17
11.(2009年寧夏卷)兩個質量分別為M1和M2的劈A和B,高度相同,放在光滑水平面上.A和B的傾斜面都是光滑曲面,曲面下端與水平面相切,如圖17所示.一質量為m的物塊位于劈A的傾斜面上,距水平面的高度為h.物塊從靜止開始滑下,然后又滑上劈B.求物塊在B上能夠達到的最大高度.
解析:設物塊到達劈A的底端時,物塊和A的速度大小分別為v和V,由機械能守恒和動量守恒得
mgh=mv2+M1V2①
M1V=mv②
設物塊在劈B上達到的最大高度為h′,此時物塊和B的共同速度大小為V′,由機械能守恒和動量守恒得
mgh′+(M2+m)V2=mv2③
mv=(M2+m)V′④
聯立
14、①②③④式得
h′=h⑤
答案:
圖18
12.40 kg的女孩騎自行車帶30 kg的男孩(如圖18所示),行駛速度2.5 m/s.自行車行駛時,男孩要從車上下來.
(1)他知道如果直接跳下來,他可能會摔跤,為什么?
(2)計算男孩下車的瞬間,女孩和自行車的速度.
(3)計算自行車和兩個孩子,在男孩下車前后整個系統(tǒng)的動能的值.如有不同,請解釋.
解析:(1)如果直接跳下來,人具有和自行車相同的速度,腳著地后,腳的速度為零,由于慣性,上身繼續(xù)向前傾斜,因此他可能會摔跤.所以他下來時用力往前推自行車,這樣他下車時水平速度是0.
(2)男孩下車前后,對整體由動量守恒定律有:
15、(m1+m2+m3)v0=(m1+m2)v
v=4 m/s(m1表示女孩質量,m2表示自行車質量,m3表示男孩質量)
(3)男孩下車前系統(tǒng)的動能
Ek=(m1+m2+m3)v
=(40+10+30)×(2.5)2J
=250 J
男孩下車后系統(tǒng)的動能
Ek′=(m1+m2)v2=(40+10)×42J=400 J
男孩下車時用力向前推自行車,對系統(tǒng)做了正功,使系統(tǒng)的動能增加了150 J.
答案:(1)如果直接跳下來,人具有和自行車相同的速度,腳著地后,腳的速度為零,由于慣性,上身繼續(xù)向前傾斜,因此他可能會摔跤.所以他下來時用力往前推自行車,這樣他下車時水平速度是0.
(2)4 m/s (3)250 J 400 J
男孩下車時用力向前推自行車,對系統(tǒng)做了正功,使系統(tǒng)的動能增加了150 J
8
用心 愛心 專心