《(新課標(biāo))廣西2019高考數(shù)學(xué)二輪復(fù)習(xí) 第2部分 高考22題各個(gè)擊破 專題6 統(tǒng)計(jì)與概率 6.2.1 統(tǒng)計(jì)與統(tǒng)計(jì)案例課件.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《(新課標(biāo))廣西2019高考數(shù)學(xué)二輪復(fù)習(xí) 第2部分 高考22題各個(gè)擊破 專題6 統(tǒng)計(jì)與概率 6.2.1 統(tǒng)計(jì)與統(tǒng)計(jì)案例課件.ppt(26頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、6.2.1統(tǒng)計(jì)與統(tǒng)計(jì)案例,樣本的數(shù)字特征的應(yīng)用 例1為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每隔30 min從該生產(chǎn)線上隨機(jī)抽取一個(gè)零件,并測量其尺寸(單位:cm).下面是檢驗(yàn)員在一天內(nèi)依次抽取的16個(gè)零件的尺寸:,(1)求(xi,i)(i=1,2,,16)的相關(guān)系數(shù)r,并回答是否可以認(rèn)為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)過程的進(jìn)行而系統(tǒng)地變大或變小(若|r|<0.25,則可以認(rèn)為零件的尺寸不隨生產(chǎn)過程的進(jìn)行而系統(tǒng)地變大或變小). (2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在( )之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查. ()從這一天抽
2、檢的結(jié)果看,是否需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查? ()在( )之外的數(shù)據(jù)稱為離群值,試剔除離群值,估計(jì)這條生產(chǎn)線當(dāng)天生產(chǎn)的零件尺寸的均值與標(biāo)準(zhǔn)差.(精確到0.01),解 (1)由樣本數(shù)據(jù)得(xi,i)(i=1,2,,16)的相關(guān)系數(shù)為,由于|r|<0.25,因此可以認(rèn)為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)過程的進(jìn)行而系統(tǒng)地變大或變小.,解題心得1.在預(yù)測總體數(shù)據(jù)的平均值時(shí),常用樣本數(shù)據(jù)的平均值估計(jì),從而做出合理的判斷. 2.平均數(shù)反映了數(shù)據(jù)取值的平均水平,標(biāo)準(zhǔn)差、方差描述了一組數(shù)據(jù)圍繞平均數(shù)波動(dòng)的大小.標(biāo)準(zhǔn)差、方差越大,數(shù)據(jù)的離散程度越大,越不穩(wěn)定.,對點(diǎn)訓(xùn)練1學(xué)校為了了解A,B兩個(gè)班級學(xué)生在本學(xué)
3、期前兩個(gè)月內(nèi)觀看電視節(jié)目的時(shí)長,分別從這兩個(gè)班級中隨機(jī)抽取10名學(xué)生進(jìn)行調(diào)查,得到他們觀看電視節(jié)目的時(shí)長(單位:小時(shí))如下. A班:5,5,7,8,9,11,14,20,22,31; B班:3,9,11,12,21,25,26,30,31,35. 將上述數(shù)據(jù)作為樣本. (1)繪制莖葉圖,并從所繪制的莖葉圖中提取樣本數(shù)據(jù)信息(至少寫出2條); (2)分別求樣本中A,B兩個(gè)班級學(xué)生的平均觀看時(shí)長,并估計(jì)哪個(gè)班級的學(xué)生平均觀看的時(shí)間較長; (3)從A班的樣本數(shù)據(jù)中隨機(jī)抽取一個(gè)不超過11的數(shù)據(jù)記為a,從B班的樣本數(shù)據(jù)中隨機(jī)抽取一個(gè)不超過11的數(shù)據(jù)記為b,求ab的概率.,(3)A班的樣本數(shù)據(jù)中不超過11
4、的數(shù)據(jù)a有6個(gè),分別為5,5,7,8,9,11;B班的樣本數(shù)據(jù)中不超過11的數(shù)據(jù)b有3個(gè),分別為3,9,11. 從上述A班和B班的數(shù)據(jù)中各隨機(jī)抽取一個(gè),記為(a,b),分別為(5,3), (5,9),(5,11),(5,3),(5,9),(5,11),(7,3),(7,9),(7,11),(8,3),(8,9),(8,11),(9,3), (9,9),(9,11),(11,3),(11,9),(11,11),共18種, 其中ab的有(5,3),(5,3),(7,3),(8,3),(9,3),(11,3),(11,9),共7種. 故ab的概率為 .,利用回歸方程進(jìn)行回歸分析 例2(2018全
5、國,文18)下圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額y(單位:億元)的折線圖.,為了預(yù)測該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額,建立了y與時(shí)間變量t的兩個(gè)線性回歸模型.根據(jù)2000年至2016年的數(shù)據(jù)(時(shí)間變量t的值依次為1,2,,17)建立模型: =-30.4+13.5t;根據(jù)2010年至2016年的數(shù)據(jù)(時(shí)間變量t的值依次為1,2,,7)建立模型: = 99+17.5t. (1)分別利用這兩個(gè)模型,求該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測值; (2)你認(rèn)為用哪個(gè)模型得到的預(yù)測值更可靠?并說明理由.,解 (1)利用模型,該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測值為 =-30
6、.4+13.519=226.1(億元). 利用模型,該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測值為 =99+17.59=256.5(億元).,(2)利用模型得到的預(yù)測值更可靠.理由如下: (i)從折線圖可以看出,2000年至2016年的數(shù)據(jù)對應(yīng)的點(diǎn)沒有隨機(jī)散布在直線y=-30.4+13.5t上下,這說明利用2000年至2016年的數(shù)據(jù)建立的線性模型不能很好地描述環(huán)境基礎(chǔ)設(shè)施投資額的變化趨勢.2010年相對2009年的環(huán)境基礎(chǔ)設(shè)施投資額有明顯增加,2010年至2016年的數(shù)據(jù)對應(yīng)的點(diǎn)位于一條直線的附近,這說明從2010年開始環(huán)境基礎(chǔ)設(shè)施投資額的變化規(guī)律呈線性增長趨勢,利用2010年至2016年
7、的數(shù)據(jù)建立的線性模型 =99+17.5t可以較好地描述2010年以后的環(huán)境基礎(chǔ)設(shè)施投資額的變化趨勢,因此利用模型得到的預(yù)測值更可靠. (ii)從計(jì)算結(jié)果看,相對于2016年的環(huán)境基礎(chǔ)設(shè)施投資額220億元,由模型得到的預(yù)測值226.1億元的增幅明顯偏低,而利用模型得到的預(yù)測值的增幅比較合理,說明利用模型得到的預(yù)測值更可靠. (以上給出了2種理由,答出其中任意一種或其他合理理由均可得分),解題心得在求兩變量相關(guān)系數(shù)和兩變量的回歸方程時(shí),由于r和 的公式比較復(fù)雜,求它的值計(jì)算量比較大,為了計(jì)算準(zhǔn)確,可將這個(gè)量分成幾個(gè)部分分別計(jì)算,最后再合成,這樣等同于分散難點(diǎn),各個(gè)攻破,提高了計(jì)算的準(zhǔn)確度.,對點(diǎn)訓(xùn)
8、練2據(jù)某市地產(chǎn)數(shù)據(jù)研究顯示,2018年該市新建住宅銷售均價(jià)走勢如下圖所示,3月至7月房價(jià)上漲過快,為抑制房價(jià)過快上漲,政府從8月開始采用宏觀調(diào)控措施,10月份開始房價(jià)得到很好的抑制.,(1)地產(chǎn)數(shù)據(jù)研究院發(fā)現(xiàn),3月至7月的各月均價(jià)y(單位:萬元/平方米)與月份x之間具有較強(qiáng)的線性相關(guān)關(guān)系,試建立y關(guān)于x的回歸方程; (2)若政府不調(diào)控,依此相關(guān)關(guān)系預(yù)測第12月份該市新建住宅銷售均價(jià).,有關(guān)獨(dú)立性檢驗(yàn)的綜合問題 例3海水養(yǎng)殖場進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時(shí)各隨機(jī)抽取了100個(gè)網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg),其頻率分布直方圖如下:,(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量
9、低于50 kg”,估計(jì)A的概率; (2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān);,(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對這兩種養(yǎng)殖方法的優(yōu)劣進(jìn)行比較.,解 (1)舊養(yǎng)殖法的箱產(chǎn)量低于50 kg的頻率為(0.012+0.014+0.024+0.034+0.040)5=0.62. 因此,事件A的概率估計(jì)值為0.62. (2)根據(jù)箱產(chǎn)量的頻率分布直方圖得列聯(lián)表,由于15.7056.635,故有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān). (3)箱產(chǎn)量的頻率分布直方圖表明:新養(yǎng)殖法的箱產(chǎn)量平均值(或中位數(shù))在50 kg到55 kg之間,舊養(yǎng)殖法的箱產(chǎn)量平均值(或中位數(shù))在4
10、5 kg到50 kg之間,且新養(yǎng)殖法的箱產(chǎn)量分布集中程度較舊養(yǎng)殖法的箱產(chǎn)量分布集中程度高,因此,可以認(rèn)為新養(yǎng)殖法的箱產(chǎn)量較高且穩(wěn)定,從而新養(yǎng)殖法優(yōu)于舊養(yǎng)殖法.,解題心得有關(guān)獨(dú)立性檢驗(yàn)的問題解題步驟:(1)作出22列聯(lián)表;(2)計(jì)算隨機(jī)變量K2的值;(3)查臨界值,檢驗(yàn)作答.,對點(diǎn)訓(xùn)練3(2018全國,文18)某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:min)繪制了如下莖葉圖:,(1)根據(jù)莖
11、葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由; (2)求40名工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù)m,并將完成生產(chǎn)任務(wù)所需時(shí)間超過m和不超過m的工人數(shù)填入下面的列聯(lián)表:,(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?,解 (1)第二種生產(chǎn)方式的效率更高. 理由如下: 由莖葉圖可知:用第一種生產(chǎn)方式的工人中,有75%的工人完成生產(chǎn)任務(wù)所需時(shí)間至少80分鐘,用第二種生產(chǎn)方式的工人中,有75%的工人完成生產(chǎn)任務(wù)所需時(shí)間至多79分鐘.因此第二種生產(chǎn)方式的效率更高. 由莖葉圖可知:用第一種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù)為85.5分鐘,用第二種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)
12、所需時(shí)間的中位數(shù)為73.5分鐘.因此第二種生產(chǎn)方式的效率更高. 由莖葉圖可知:用第一種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)平均所需時(shí)間高于80分鐘;用第二種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)平均所需時(shí)間低于80分鐘.因此第二種生產(chǎn)方式的效率更高.,由莖葉圖可知:用第一種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時(shí)間分布在莖8上的最多,關(guān)于莖8大致呈對稱分布;用第二種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時(shí)間分布在莖7上的最多,關(guān)于莖7大致呈對稱分布.又用兩種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)所需時(shí)間分布的區(qū)間相同,故可以認(rèn)為用第二種生產(chǎn)方式完成生產(chǎn)任務(wù)所需的時(shí)間比用第一種生產(chǎn)方式完成生產(chǎn)任務(wù)所需的時(shí)間更少.因此第二種生產(chǎn)方式的效率更高. 以上給出了4種理由,考生答出其中任意一種或其他合理理由均可得分.,