分級變速主傳動系統(tǒng)的設計【Nmin=100rmin Nmax=800rmin Z=10 φ=1.26 P=3.5-5KW n=710-1420rmin】
分級變速主傳動系統(tǒng)的設計【Nmin=100rmin Nmax=800rmin Z=10 φ=1.26 P=3.5-5KW n=710-1420rmin】,Nmin=100rmin Nmax=800rmin Z=10 φ=1.26 P=3.5-5KW n=710-1420rmin,分級變速主傳動系統(tǒng)的設計【Nmin=100rmin,Nmax=800rmin,分級
寧XX大學
課程設計(論文)
分級變速主傳動系統(tǒng)設計(題目25)
所在學院
專 業(yè)
班 級
姓 名
學 號
指導老師
年 月 日
5
摘 要
設計機床得主傳動變速系統(tǒng)時首先利用傳動系統(tǒng)設計方法求出理想解和多個合理解。根據數控機床主傳動系統(tǒng)及主軸功率與轉矩特性要求,分析了機電關聯分級調速主傳動系統(tǒng)的設計原理和方法。從主傳動系統(tǒng)結構網入手,確定最佳機床主軸功率與轉矩特性匹配方案,計算和校核相關運動參數和動力參數。本說明書著重研究機床主傳動系統(tǒng)的設計步驟和設計方法,根據已確定的運動參數以變速箱展開圖的總中心距最小為目標,擬定變速系統(tǒng)的變速方案,以獲得最優(yōu)方案以及較高的設計效率。在機床主傳動系統(tǒng)中,為減少齒輪數目,簡化結構,縮短軸向尺寸,用齒輪齒數的設計方法是試算,湊算法,計算麻煩且不易找出合理的設計方案。本文通過對主傳動系統(tǒng)中三聯滑移齒輪傳動特點的分析與研究,繪制零件工作圖與主軸箱展開圖及剖視圖。
關鍵詞 分級變速;傳動系統(tǒng)設計,傳動副,結構網,結構式,齒輪模數,傳動比
目 錄
摘 要 2
目 錄 4
第1章 緒論 6
1.1 課程設計的目的 6
1.2課程設計的內容 6
1.2.1 理論分析與設計計算 6
1.2.2 圖樣技術設計 6
1.2.3編制技術文件 6
1.3 課程設計題目、主要技術參數和技術要求 7
1.3.1課程設計題目和主要技術參數 7
1.3.2技術要求 7
第2章 運動設計 8
2.1運動參數及轉速圖的確定 8
2.1.1 轉速范圍 8
2.1.2 轉速數列 8
2.1.3確定結構式 8
2.1.4確定結構網 8
2.1.5繪制轉速圖和傳動系統(tǒng)圖 9
2.2 確定各變速組此論傳動副齒數 10
2.3 核算主軸轉速誤差 11
第3章 動力計算 13
3.1 帶傳動設計 13
3.2 計算轉速的計算 17
3.3 齒輪模數計算及驗算 18
3.4 傳動軸最小軸徑的初定 21
3.5 主軸合理跨距的計算 22
第4章 主要零部件的選擇 23
4.1電動機的選擇 23
4.2 軸承的選擇 23
4.3 鍵的規(guī)格 23
4.4變速操縱機構的選擇 24
第5章 校核 24
5.1 剛度校核 24
5.2 軸承壽命校核 25
第6章 結構設計及說明 26
6.1 結構設計的內容、技術要求和方案 26
6.2 展開圖及其布置 26
結 論 27
參考文獻 28
致 謝 29
分級變速主傳動系統(tǒng)設計論文
第1章 緒論
1.1 課程設計的目的
《機械系統(tǒng)設計》課程設計是在學完本課程后,進行一次學習設計的綜合性練習。通過課程設計,使學生能夠運用所學過的基礎課、技術基礎課和專業(yè)課的有關理論知識,及生產實習等實踐技能,達到鞏固、加深和拓展所學知識的目的。通過課程設計,分析比較機械系統(tǒng)中的某些典型機構,進行選擇和改進;結合結構設計,進行設計計算并編寫技術文件;完成系統(tǒng)主傳動設計,達到學習設計步驟和方法的目的。通過設計,掌握查閱相關工程設計手冊、設計標準和資料的方法,達到積累設計知識和設計技巧,提高學生設計能力的目的。通過設計,使學生獲得機械系統(tǒng)基本設計技能的訓練,提高分析和解決工程技術問題的能力,并為進行機械系統(tǒng)設計創(chuàng)造一定的條件。
1.2課程設計的內容
《機械系統(tǒng)設計》課程設計內容由理論分析與設計計算、圖樣技術設計和技術文件編制三部分組成。
1.2.1 理論分析與設計計算
(1)機械系統(tǒng)的方案設計。設計方案的分析,最佳功能原理方案的確定。
(2)根據總體設計參數,進行傳動系統(tǒng)運動設計和計算。
(3)根據設計方案和零部件選擇情況,進行有關動力計算和校核。
1.2.2 圖樣技術設計
(1)選擇系統(tǒng)中的主要機件。
(2)工程技術圖樣的設計與繪制。
1.2.3編制技術文件
(1)對于課程設計內容進行自我經濟技術評價。
(2)編制設計計算說明書。
1.3 課程設計題目、主要技術參數和技術要求
1.3.1課程設計題目和主要技術參數
題目25:分級變速主傳動系統(tǒng)設計
技術參數:
Nmin=100r/min;Nmax=800r/min;
Z=10級;公比為1.26;電動機功率P=3.5/5kW;電機轉速n=710/1420r/min
1.3.2技術要求
(1)利用電動機完成換向和制動。
(2)各滑移齒輪塊采用單獨操縱機構。
(3)進給傳動系統(tǒng)采用單獨電動機驅動。
30
分級變速主傳動系統(tǒng)設計論文
第2章 運動設計
2.1運動參數及轉速圖的確定
2.1.1 轉速范圍
Rn===8
2.1.2 轉速數列
查[1]表2.12,首先找到100r/min、然后每隔3個數取一個值(1.26=1.064),得出主軸的轉速數列為100r/min、125 r/min、160 r/min、200 r/min、250r/min、315r/min、400 r/min、500 r/min、630 r/min、800 r/min共10級。
2.1.3確定結構式
對于Z=10可以按照Z=12,
實現12級主軸轉速變化的傳動系統(tǒng)可以寫成多種傳動副組合:
12=3×4 12=4×3
12=3×2×2 12=2×3×2 12=2×2×3
12=2×3×2。
在上列兩行方案中,第一行的方案有時可以節(jié)省一根傳動軸,缺點是有一個傳動組內有四個傳動副。如用一個四聯滑移齒輪,則會增加軸向尺寸;如果用兩個雙聯滑移齒輪,操縱機構必須互鎖以防止兩個雙聯滑移齒輪同時嚙合,所以少用。
根據傳動副數目分配應“前多后少”的原則,方案12=3×2×2是可取的。但是,由于主軸換向采用雙向離合器結構,致使Ⅰ軸尺寸加大,此方案也不宜采用,而應選用方案12=2×3×2。
2.1.4確定結構網
12=2×3×2的傳動副組合,其傳動組的擴大順序又可以有以下6種形式:
A、12=21×32×26 B、12=21×34×22
C、12 =23×31×26 D、12=26×31×23
E、12=22×34×21 F、12=26×32×21
根據“前多后少” , “先降后升” , 前密后疏,結構緊湊的原則, 選取傳動方案 Z=12=23×31×26其結構網如圖2-1。已知該題設選用電機為二級調速電機,其分攤了0-1級的2個級別的變速。
圖2-1結構網
2.1.5繪制轉速圖和傳動系統(tǒng)圖
(1)選擇電動機:采用Y系列封閉自扇冷式鼠籠型三相異步電動機。
(2)繪制轉速圖
圖2-2 轉速圖
(3)畫主傳動系統(tǒng)圖。根據系統(tǒng)轉速圖及已知的技術參數,畫主傳動系統(tǒng)圖如圖2-3:
1-2軸最小中心距:A1_2min>1/2(Zmaxm+2m+D)
軸最小齒數和:Szmin>(Zmax+2+D/m)
2.2 確定各變速組此論傳動副齒數
(1)Sz100-120,中型機床Sz=70-100
(2)直齒圓柱齒輪Zmin18-20
圖2-3 主傳動系統(tǒng)圖
(7)齒輪齒數的確定。據設計要求Zmin≥18~20,齒數和Sz≤100~120,由表4.1,根據各變速組公比,可得各傳動比和齒輪齒數,各齒輪齒數如表2-2。
表2-2 齒輪齒數
傳動比
基本組
第一擴大組
1:1.58
1:1.26
1:1
1.26:1
1:2
代號
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
齒數
27
43
31
39
35
35
67
53
40
80
2.3 核算主軸轉速誤差
實際傳動比所造成的主軸轉速誤差,一般不應超過±10(-1)%,即
〈10(-1)%
選一種情況計算
對Nmax=800r/min,實際轉速Nmax=1420×××=798.75r/min
則有
==1.56%〈2.6%
因此滿足要求。
同理,根據計算得出其他各組的數據如下表:
各級轉速誤差
n
800
630
500
400
315
250
200
160
125
100
n`
798.75
645
513
408
322
258
205
162
129
103
誤差
1.56%
2.36%
2.59%
2.01%
2.36
%
2.22%
2.56
%
1.27
%
2.22
%
2.56%
轉速誤差都小于2.6%,因此不需要修改齒數。
第3章 動力計算
3.1 帶傳動設計
輸出功率P=3.5/5kw,轉速n1=710/1420r/min,n2=315/630r/min
3.1計算設計功率Pd
表4 工作情況系數
工作機
原動機
ⅰ類
ⅱ類
一天工作時間/h
10~16
10~16
載荷
平穩(wěn)
液體攪拌機;離心式水泵;通風機和鼓風機();離心式壓縮機;輕型運輸機
1.0
1.1
1.2
1.1
1.2
1.3
載荷
變動小
帶式運輸機(運送砂石、谷物),通風機();發(fā)電機;旋轉式水泵;金屬切削機床;剪床;壓力機;印刷機;振動篩
1.1
1.2
1.3
1.2
1.3
1.4
載荷
變動較大
螺旋式運輸機;斗式上料機;往復式水泵和壓縮機;鍛錘;磨粉機;鋸木機和木工機械;紡織機械
1.2
1.3
1.4
1.4
1.5
1.6
載荷
變動很大
破碎機(旋轉式、顎式等);球磨機;棒磨機;起重機;挖掘機;橡膠輥壓機
1.3
1.4
1.5
1.5
1.6
1.8
根據V帶的載荷平穩(wěn),兩班工作制(16小時),查《機械設計》P296表4,
取KA=1.1。即
3.2選擇帶型
普通V帶的帶型根據傳動的設計功率Pd和小帶輪的轉速n1按《機械設計》P297圖13-11選取。
根據算出的Pd=5.5kW及小帶輪轉速n1=1440r/min ,查圖得:d d=112~140可知應選取A型V帶。
3.3確定帶輪的基準直徑并驗證帶速
由《機械設計》P298表13-7查得,小帶輪基準直徑為112~140mm
則取dd1= 125mm> ddmin.=75 mm(dd1根據P295表13-4查得)
表3. V帶帶輪最小基準直徑
槽型
Y
Z
A
B
C
D
E
20
50
75
125
200
355
500
由《機械設計》P295表13-4查“V帶輪的基準直徑”,得=280mm
① 誤差驗算傳動比:(為彈性滑動率)
誤差,符合要求
② 帶速
滿足5m/s300mm,所以宜選用E型輪輻式帶輪。
總之,小帶輪選H型孔板式結構,大帶輪選擇E型輪輻式結構。
帶輪的材料:選用灰鑄鐵,HT200。
3.7確定帶的張緊裝置
選用結構簡單,調整方便的定期調整中心距的張緊裝置。
3.8計算壓軸力
由《機械設計》P303表13-12查得,A型帶的初拉力F0=136.98N,上面已得到=165.72o,z=4,則
3.2 計算轉速的計算
(1)主軸的計算轉速nj,由公式n=n得,主軸的計算轉速nj=171.47r/min,
取160 r/min。
(2). 傳動軸的計算轉速
Ⅱ軸共有6級轉速:200r/min、250 r/min、315 r/min、400r/min、500r/min、630r/min。若經傳動副Z/ Z傳動主軸,則全部傳遞全功率;若經傳動副Z/ Z傳動主軸,全部傳遞全功率,其中200r/min是傳遞全功率的最低轉速, 故其計算轉速nⅡj=200 r/min;Ⅰ 軸有2級轉速,且都傳遞全功率,所以其計算轉速nⅠj=315 r/min。各計算轉速入表3-1。
表3-1 各軸計算轉速
軸 號
Ⅰ 軸
Ⅱ 軸
Ⅲ 軸
計算轉速 r/min
315
200
160
(3) 確定齒輪副的計算轉速。
確定齒輪副的計算轉速。齒輪Z裝在主軸上并具有315-1000r/min共6級轉速,它們都傳遞全功率,故Zj=315 r/min。
齒輪Z裝在Ⅱ軸上,有200-630 r/min共6級轉速,但經齒輪副Z/ Z傳動主軸,則全部傳遞全功率,故Zj=200r/min。依次可以得出其余齒輪的計算轉速,如表3-2。
表3-2 齒輪副計算轉速
單位:(r·min)
序號
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
n
315
200
315
250
315
315
200
80
200
315
3.3 齒輪模數計算及驗算
(1)模數計算。一般同一變速組內的齒輪取同一模數,選取負荷最重的小齒輪,按簡化的接觸疲勞強度公式進行計算,即mj=16338可得各組的模數,
式中 mj——按接觸疲勞強度計算的齒輪模數(mm);
——驅動電動機功率(kW);
——被計算齒輪的計算轉速(r/min);
——大齒輪齒數與小齒輪齒數之比,外嚙合取“+”,內嚙合取“-”;
——小齒輪的齒數(齒);
——齒寬系數,(B為齒寬,m為模數),;=8
——材料的許用接觸應力()。取=650 Mpa
(2)基本組的齒輪參數計算
I—II軸:
結合齒輪的模數標準,取標準值m=3
(3)擴大組的齒輪參數計算
II—III軸:
取整后模數為:I—II軸:3mm;II—III軸:3mm。
如表3-3所示。
表3-3 模數
組號
基本組
擴大組
模數 mm
3
3
(2)基本組齒輪計算。
基本組齒輪幾何尺寸見下表
齒輪
齒數
分度圓直徑
齒頂圓直徑
齒根圓直徑
齒寬
Z
27
81
87
73.5
24
Z
43
129
135
121.5
24
Z
31
93
99
85.5
24
Z
39
117
123
109.5
24
Z
35
105
111
97.5
24
Z
35
105
111
97.5
24
按基本組最小齒輪計算。小齒輪用40Cr,調質處理,硬度241HB~286HB,平均取260HB,大齒輪用45鋼,調質處理,硬度229HB~286HB,平均取240HB。計算如下:
① 齒面接觸疲勞強度計算:
接觸應力驗算公式為
彎曲應力驗算公式為:
式中 N----傳遞的額定功率(kW),這里取N為電動機功率,N=3.5kW;
-----計算轉速(r/min). =630(r/min);
m-----初算的齒輪模數(mm), m=3(mm);
B----齒寬(mm);B=24(mm);
z----小齒輪齒數;z=27;
u----小齒輪齒數與大齒輪齒數之比,u=2.78;
-----壽命系數;
=
----工作期限系數;
T------齒輪工作期限,這里取T=15000h.;
-----齒輪的最低轉速(r/min)
----基準循環(huán)次數,接觸載荷取=,彎曲載荷取=
m----疲勞曲線指數,接觸載荷取m=3;彎曲載荷取m=6;
----轉速變化系數,查【5】2上,取=0.60
----功率利用系數,查【5】2上,取=0.78
-----材料強化系數,查【5】2上, =0.60
-----工作狀況系數,取=1.1
-----動載荷系數,查【5】2上,取=1
------齒向載荷分布系數,查【5】2上,=1
Y------齒形系數,查【5】2上,Y=0.386;
----許用接觸應力(MPa),查【4】,表4-7,取=650 Mpa;
---許用彎曲應力(MPa),查【4】,表4-7,取=275 Mpa;
根據上述公式,可求得及查取值可求得:
=635 Mpa
=78 Mpa
(3)擴大組齒輪計算。
擴大組齒輪幾何尺寸見下表
齒輪
Z4
Z4`
Z5
Z5`
齒數
67
53
40
80
分度圓直徑
201
159
120
240
齒頂圓直徑
207
165
126
246
齒根圓直徑
193.5
151.5
112.5
332.5
齒寬
24
24
24
24
按擴大組最小齒輪計算。小齒輪用40Cr,調質處理,硬度241HB~286HB,平均取260HB,大齒輪用45鋼,調質處理,硬度229HB~286HB,平均取240HB。
同理根據基本組的計算,
查文獻【6】,可得 =0.62, =0.77,=0.60,=1.1,
=1,=1,m=3.5,=355;
可求得:
=619 Mpa
=135Mpa
3.4 傳動軸最小軸徑的初定
由【5】式6,傳動軸直徑按扭轉剛度用下式計算:
d=1.64(mm)
或 d=91(mm)
式中 d---傳動軸直徑(mm)
Tn---該軸傳遞的額定扭矩(N*mm) T=9550000;
N----該軸傳遞的功率(KW)
----該軸的計算轉速
---該軸每米長度的允許扭轉角,=。
各軸最小軸徑如表3-3。
表3-3 最小軸徑
軸 號
Ⅰ 軸
Ⅱ 軸
III 軸
最小軸徑mm
25
30
45
3.5 主軸合理跨距的計算
由于電動機功率P=3.5/5kw,根據【1】表3.20,前軸徑應為60~90mm。初步選取d1=80mm。后軸徑的d2=(0.7~0.9)d1,取d2=60mm。根據設計方案,前軸承為NN3016K型,后軸承為圓錐滾子軸承。定懸伸量a=120mm,主軸孔徑為30mm。
軸承剛度,主軸最大輸出轉矩
T=9550×=9550×=341.07N·m
假設設該機床為車床的最大加工直徑為300mm。床身上最常用的最大加工直徑,即經濟加工直徑約為最大回轉直徑的50%,這里取60%,即180mm,故半徑為0.09m;
切削力(沿y軸) Fc==4716N
背向力(沿x軸) Fp=0.5 Fc=2358N
總作用力 F==5272.65N
此力作用于工件上,主軸端受力為F=5272.65N。
先假設l/a=2,l=3a=240mm。前后支承反力RA和RB分別為
RA=F×=5272.65×=7908.97N
RB=F×=5272.65×=2636.325N
根據文獻【1】式3.7 得:Kr=3.39得前支承的剛度:KA= 1689.69 N/ ;KB= 785.57 N/;==2.15
主軸的當量外徑de=(80+60)/2=70mm,故慣性矩為:
I==113.8×10-8m4
η===0.14
查【1】圖3-38得 =2.0,與原假設接近,所以最佳跨距=120×2.0=240mm
合理跨距為(0.75-1.5),取合理跨距l(xiāng)=360mm。
根據結構的需要,主軸的實際跨距大于合理跨距,因此需要采取措施
增加主軸的剛度,增大軸徑:前軸徑D=100mm,后軸徑d=80mm。前軸承
采用雙列圓柱滾子軸承,后支承采用背對背安裝的角接觸球軸承。
第4章 主要零部件的選擇
4.1電動機的選擇
轉速n=710/1420r/min,功率P=3.5/5kW
選用Y系列三相異步雙速電動機
4.2 軸承的選擇
I軸:與帶輪靠近段安裝雙列角接觸球軸承代號7007C 另一安裝深溝球軸承6012
II軸:對稱布置深溝球軸承6009
III軸:后端安裝雙列角接觸球軸承代號7015C
另一安裝端角接觸球軸承代號7010C
中間布置角接觸球軸承代號7012C
4.3 鍵的規(guī)格
I軸安裝帶輪處選擇普通平鍵規(guī)格:
BXL=10X56
II軸選擇花鍵規(guī)格:
N× d×D×B =8X36X40X7
III軸選擇鍵規(guī)格:
BXL=14X90
4.4變速操縱機構的選擇
選用左右擺動的操縱桿使其通過桿的推力來控制II軸上的三聯滑移齒輪和二聯滑移齒輪。
第5章 校核
5.1 剛度校核
(1)軸的受力分析
1)求軸傳遞的轉矩
T=9.55×=9.55××=238.75×N·mm
2)求軸上的作用力
齒輪上的圓周力
= = =2652N·mm
齒輪上的徑向力
=tan= 2652·tan20°=965N·mm
3)確定軸的跨距
=255,=130,=80
(2)軸的受力分析
1)作軸的空間受力簡圖
2)作水平受力簡圖和彎矩圖
=292N,=5549N
=74460N,=-303120N
3)作垂直受力簡圖和彎矩圖
=466N,=913N
=118830N
4)作合成彎矩圖
==140231N·mm
==303120N·mm
5)作轉矩圖
=341.07×N·mm=341070 N·mm
6)作當量彎矩圖
==368773N·mm
由《機械設計》教材表7.5查得,對于45鋼,=600Mpa, =55Mpa,由公式
===30.0Mpa<,故軸的強度足夠。
(1)П軸撓度校核
單一載荷下,軸中心處的撓度采用文獻【5】中的公式計算::
L-----兩支承的跨距;
D-----軸的平均直徑;
X=/L;-----齒輪工作位置處距較近支承點的距離;
N-----軸傳遞的全功率;
校核合成撓度
-----輸入扭距齒輪撓度;
-------輸出扭距齒輪撓度
;
---被演算軸與前后軸連心線夾角;=144°
嚙合角=20°,齒面摩擦角=5.72°。
代入數據計算得:=0.026;=0.084;=0.160;
=0.205;=0.088;=0.025。
合成撓度 =0.238
查文獻【6】,帶齒輪軸的許用撓度=5/10000*L
即=0.268。
因合成撓度小于許用撓度,故軸的撓度滿足要求。
(2)П軸扭轉角的校核
傳動軸在支承點A,B處的傾角可按下式近似計算:
將上式計算的結果代入得:
由文獻【6】,查得支承處的=0.001
因〈0.001,故軸的轉角也滿足要求。
5.2 軸承壽命校核
由П軸最小軸徑可取軸承為7008c角接觸球軸承,ε=3;P=XFr+YFa
X=1,Y=0。
對Ⅱ軸受力分析
得:前支承的徑向力Fr=2642.32N。
由軸承壽命的計算公式:預期的使用壽命 [L10h]=15000h
L10h=×=×=h≥[L10h]=15000h
軸承壽命滿足要求。
第6章 結構設計及說明
6.1 結構設計的內容、技術要求和方案
設計主軸變速箱的結構包括傳動件(傳動軸、軸承、帶輪、齒輪、離合器和制動器等)、主軸組件、操縱機構、潤滑密封系統(tǒng)和箱體及其聯結件的結構設計與布置,用一張展開圖和若干張橫截面圖表示。課程設計由于時間的限制,一0般只畫展開圖。
主軸變速箱是機床的重要部件。設計時除考慮一般機械傳動的有關要求外,著重考慮以下幾個方面的問題。
精度方面的要求,剛度和抗震性的要求,傳動效率要求,主軸前軸承處溫度和溫升的控制,結構工藝性,操作方便、安全、可靠原則,遵循標準化和通用化的原則。
主軸變速箱結構設計時整個機床設計的重點,由于結構復雜,設計中不可避免要經過反復思考和多次修改。在正式畫圖前應該先畫草圖。目的是:
1 布置傳動件及選擇結構方案。
2 檢驗傳動設計的結果中有無干涉、碰撞或其他不合理的情況,以便及時改正。
3 確定傳動軸的支承跨距、齒輪在軸上的位置以及各軸的相對位置,以確
定各軸的受力點和受力方向,為軸和軸承的驗算提供必要的數據。
6.2 展開圖及其布置
展開圖就是按照傳動軸傳遞運動的先后順序,假想將各軸沿其軸線剖開并將這些剖切面平整展開在同一個平面上。
總布置時需要考慮制動器的位置。制動器可以布置在背輪軸上也可以放在其他軸上。制動器不要放在轉速太低軸上,以免制動扭矩太大,是制動尺寸增大。
齒輪在軸上布置很重要,關系到變速箱的軸向尺寸,減少軸向尺寸有利于提高剛度和減小體積。
I軸上裝的摩擦離合器和變速齒輪。有兩種布置方案,一是將兩級變速齒輪和離合器做成一體。齒輪的直徑受到離合器內徑的約束,齒根圓的直徑必須大于離合器的外徑,負責齒輪無法加工。這樣軸的間距加大。另一種布置方案是離合器的左右部分分別裝在同軸線的軸上,左邊部分接通,得到一級反向轉動,右邊接通得到三級反向轉動。這種齒輪尺寸小但軸向尺寸大。我們采用第一種方案,通過空心軸中的拉桿來操縱離合器的結構。
結 論
分級變速主傳動系統(tǒng)設計的結構及部分計算,到這里基本結束了,由于筆者水平有限,加之時間倉促,僅對分級變速主傳動系統(tǒng)主要部分進行設計和校核,定有許多地方處理不夠妥當,有些部分甚至可能存在錯誤,望老師多提寶貴意見。
經過這次課程設計,使我對機械系統(tǒng)設計這門課當中許多原理公式有了進一步的了解,并且對設計工作有了更深入的認識。在設計過程中,得到XX老師的精心指導和幫助,在此表示衷心的感謝。
參考文獻
【1】候珍秀.《機械系統(tǒng)設計》.哈爾濱工業(yè)大學出版社,修訂版;
【2】、于惠力 主編 《機械設計》 科學出版社 第一版
【3】、戴 曙 主編 《金屬切削機床設計》 機械工業(yè)出版社
【4】、戴 曙 主編 《金屬切削機床》 機械工業(yè)出版社 第一版
【4】、趙九江 主編 《材料力學》 哈爾濱工業(yè)大學出版社 第一版
【6】、鄭文經 主編 《機械原理》 高等教育出版社 第七版
【7】、于惠力 主編 《機械設計課程設計》 科學出版社
致 謝
在設計成過程中,感謝很多人的幫助和指點,首先我要感謝我的母校的辛勤培育,感謝院系各位老師四年來的諄諄教誨,感謝他們默默的栽培我。
本次設計是在我的導師XX教授的親切關懷和悉心指導下完成的。他嚴肅的科學態(tài)度,嚴謹的治學精神,精益求精的工作作風,深深地感染和激勵著我。從課題的選擇到項目的最終完成,老師都始終給予我細心的指導和不懈的支持,在此,謹向教師表示衷心的感謝和崇高的敬意!。
此外,在畢業(yè)設計過程中,也得到了其他老師和同學的幫助,設計任務一直在很好的氛圍中進行,在這里,也向他們表示真誠的感謝!
再次向設計中所有提供過幫助的人表示感謝!
附錄:
THE FILE TRANSMISSION GEAR SELECTION
OF THE BASIC PARAMETERS
1, Reasonable choice of module:
Modulus is an important gear basic parameters, the greater the modulus, the greater the tooth thickness, the bending strength of gear is also greater, and its greater carrying capacity. Instead modulus smaller tooth thickness will be thinner, the bending strength of gear will be smaller. The low profile of the gear, due to the low rotational speed, torque, and gear of the relatively large bending stress, so need to choose a larger module in order to ensure its strength. And high-speed file gear, due to the high-speed, torque small gear bending stress is relatively small, so to ensure that the bending strength of gear under the premise of the general selection of the smaller module, so that gear teeth can be increased in order to obtain larger degree of overlap, so as to achieve the purpose of reducing noise.
In a modern gearbox design, the file selection module gear is different. For example, a transmission gear of a file to the five-gear gear module are: 3.5; 3; 2.75; 2.5; 2; to change over the past modulus or modulus of the same can not be the situation of Latin America.
2, a reasonable selection of pressure angle:
When a gear module and set the number of teeth, the gear diameter is determined, and the gear tooth involute base circle depends on the size, the size of the base circle and under pressure angle. For the same pitch circle of gear, if its pitch circle a different pressure angle, base circle is different. When the greater the pressure angle, the base circle diameter of the smaller, more curved involute, tooth root of the tooth will thicken, increase the tooth surface radius of curvature, which can increase the tooth bending strength and contact strength. When reducing the pressure angle, the base will become larger diameter, involute tooth profile will change some of the straight, thinning of the tooth root, tooth smaller radius of curvature, making the tooth bending strength and contact intensity will decrease, but decrease with the pressure angle, to increase the contact ratio gears, reducing the stiffness of the tooth, and can reduce the entry and exit load at the time of engagement, all of which are beneficial to reduce noise. There-fore, low profile gear, often larger pressure angle in order to meet the strength requirements; and regular use of high-speed file smaller gear pressure angle in order to meet the requirements of its lower noise.
For example: a gear module 3, the number of teeth of 30, when the pressure angle of 17.5 degrees for the circular tooth thickness of the base to 5.341; when the pressure angle of 25 degrees, the tooth thickness of the base circle to 6.716; its base circle to increase the tooth thickness 25%, so increase the pressure angle to increase their flexural strength.
3, A reasonable selection of Helix Angle:
Compared with the straight gear, helical gear drive with a smooth, coincidence degree, the impact is small and the advantages of small noise. As a result of the present with synchronous transmission, and transmission will no longer be a direct mobile gear meshing with another gear, but with all the gears are meshing, so that'll bring convenience to the use of helical gear, so to bring the gearbox synchronizer Most of the use of helical gear.
Helical gear as a result of the characteristics of the entire tooth width decision not to enter the mesh at the same time all but one end of first gear into the mesh, with the drive gear along the tooth width direction mesh gradually until all the teeth have wide access to mesh, so the actual meshing helical gear spur the region than the large. When the tooth when a certain width, the contact ratio of helical gear with helix angle increases. Carrying capacity is also stronger, have better stability. In theory, the better helix angle, but the helix angle increases, the axial force will also increase, so that reduces the transmission efficiency.
In the modern design of the gearbox, in order to ensure smooth gear drive, low noise and less impact, all . Files for°gear should choose a larger helix angle, generally about 30 high-speed gear as a result of the higher speed, for a smooth, low impact, low noise, so the use of small modulus, large helical angle; and low-profile gear module using the larger, smaller helix angle.
4, The perspective of a reasonable modification is selected:
With good conditions for the lubrication of the hardened gear is generally believed that the main danger is in the cycle under alternating stress, the fatigue crack Dedendum gradual expansion of the tooth root fracture caused by the failure. Failure in the gear transmission is a part of this. In order to avoid a broken tooth, should be to maximize the tooth root bending strength, and the use is changed, and can achieve this objective. Under normal circumstances, the greater the coefficient, the smaller values tooth, tooth bending stress on the smaller, the higher the bending strength of teeth.
In the hardened gear, the tooth surface pitting failure is one of the reasons off. Increased engagement angle, can reduce the inter-tooth contact stress and maximum slip rates, can greatly increase the ability of anti-pitting. And increased engagement angle, it must have a gear shift is introduced, thereby enhancing contact strength of tooth surface can improve the flexural strength of tooth roots, so as to enhance the effect of the carrying capacity of gears. However, for helical gear drive, variable coefficient is too large, and will total tooth length of the contact line, but to reduce its carrying capacity. At the same time, the greater the coefficient, as a result of tooth to tip increases, the thickness of the tip will be smaller, which will affect the strength of the top teeth.
Therefore, in the design of a modern gearbox, the majority of all reasonable use of gear shift is the angle in order to maximize its advantages. Mainly in the following design criteria:
low profile for the gear pair, the driving gear of the coefficient should be larger than the passive gear shift coefficient, and pair of high-speed profile, the driving gear of the coefficient should be less than passive coefficient gear.
gear with the modification coefficient increased gradually stalls xiajiang. This is because low-grade zones as a result of low rotational speed, torque, and gear for high intensity, so the need to use more of the modification coefficient da.
The total of the gear profile shift coefficient is positive (of the anglel shift as amended), and increased with the stalls and gradually decreased. The smaller the total coefficient, a pair of pair of tooth root of the thickness of the total will be thin, tooth root becomes weak, the lower the bending strength, but decreased as a result of the stiffness of the tooth, easy to absorb shock and vibration, so can reduce the noise. And tooth contact ratio will increase, which bear a single tooth at the time of maximum load Dedendum recent focus distance, the reduced bending moment, which is equivalent to increase the strength of the tooth root, which as a result of thinning and weakened tooth root strength offset factor. Therefore, the greater the overall coefficient, the higher the strength of the tooth root, but the noise may increase. Thus high-speed gear to choose a smaller file of the total coefficient, and low-profile gear must be chosen larger coefficient
5, to improve tip high coefficient:
Top gear in the transmission of high quality factor, the impact of focusing on adaptation, in the main impact of helical gear contact ratio face. Coincidence degree by the end of the formula, we can see that when the number of teeth and meshing certain angle, the tooth tip is affected by tooth pressure angle coefficient of the top high impact factor the greater the high-tip, round tip the greater the pressure angle, contact ratio is The greater and ore stable drive. However, the high coefficient the greater the tip, the thickness of the top teth will become thin, thus affecting the strength tip. At the same time, at least not from the tooth root formula, the high coefficient the greater the tip, at least not the root will increase the number of gear, otherwise, they would have a root cutting. As a result, guarantees of non-root tip-cut and sufficient strength, increased tooth top high coefficient of coincidence degree for the increase is significant.
Top gear in the transmission of high quality factor, the impact of focusing on adaptation, in the main impact of helical gear contact ratio face. Coincidence degree by the end of the formula, we can see that when the number of teeth and meshing certain angle, the tooth tip is affected by tooth pressure angle coefficient of the top high impact factor the greater the high-tip, round tip the greater the pressure angle, contact ratio is The greater and more stable drive. However, the high coefficient the greater the tip, the thickness of the top teeth will become thin, thus affecting the strength tip. At the same time, at least not from the tooth root formula, the high coefficient the greater the tip, at least not the root will increase the number of gear, otherwise, they would have a root cutting. As a result, guarantees of non-root tip-cut and sufficient strength, increased tooth top high coeff-icient of coincidence degree for the increase is significant.
The above is from the module, pressure angle, helix angle, coefficient and a high coefficient of this addendum to an independent analysis of the five aspects of gear design trends. In fact between the various para-meters are inter-related, involved with each other, the choice of transmission parameters, it is necessary to take into account their strengths and weaknesses, but also consider the relationship between them, so in order to maximize their strengths and avoid weaknesses to improve transmission performance.
變速箱各檔齒輪基本參數的選擇
1、合理選用模數
模數是齒輪的一個重要基本參數,模數越大,齒厚也就越大,齒輪的彎曲強度也越大,它的承載能力也就越大。反之模數越小,齒厚就會變薄,齒輪的彎曲強度也就越小。對于低速檔的齒輪,由于轉速低、扭矩大,齒輪的彎曲應力比較大,所以需選用較大的模數,以保證其強度要求。而高速檔齒輪,由于轉速高、扭矩小,齒輪的彎曲應力比較小,所以在保證齒輪彎曲強度的前提下,一般選用較小的模數,這樣就可以增加齒輪的齒數,以得到較大的重合度,從而達到降低噪聲的目的。
在現代變速箱設計中,各檔齒輪模數的選擇是不同的。例如,某變速箱一檔齒輪到五檔齒輪的模數分別是:3.5;3;2.75;2.5;2;從而改變了過去模數相同或模數拉不開的狀況。
2、合理選用壓力角
當一個齒輪的模數和齒數確定了,齒輪的分度圓直徑也就確定了,而齒輪的漸開線齒形取決于基圓的大小,基圓大小又受到壓力角的影響。對于同一分度圓的齒輪而言,若其分度圓壓力角不同,基圓也就不同。當壓力角越大時,基圓直徑就越小,漸開線就越彎曲,輪齒的齒根就會變厚,齒面曲率半徑增大,從而可以提高輪齒的彎曲強度和接觸強度。當減小壓力角時,基圓直徑就會變大,齒形漸開線就會變的平直一些,齒根變薄,齒面的曲率半徑變小,從而使得輪齒的彎曲強度和接觸強度均會下降,但是隨著壓力角的減小,可增加齒輪的重合度,減小輪齒的剛度,并且可以減小進入和退出嚙合時的動載荷,所有這些都有利于降低噪聲。因此,對于低速檔齒輪,常采用較大的壓力角,以滿足其強度要求;而高速檔齒輪常采用較小的壓力角,以滿足其降低噪聲的要求。
例如:某一齒輪模數為3,齒數為30,當壓力角為17.5度時基圓齒厚為5.341;當壓力角為25度時,基圓齒厚為6.716;其基圓齒厚增加了25%左右,所以增大壓力角可以增加其彎曲強度。
3、合理選用螺旋角
與直齒輪相比,斜齒輪具有傳動平穩(wěn),重合度大,沖擊小和噪聲小等優(yōu)點?,F在的變速箱由于帶同步器,換檔時不再直接移動一個齒輪與另一個齒輪嚙合,而是所有的齒輪都相嚙合,這樣就給使用斜齒輪帶來方便,因此帶同步器的變速箱大多都使用斜齒輪。
由于斜齒輪的特點,決定了整個齒寬不是同時全部進入嚙合的,而是先由輪齒的一端進入嚙合,隨著輪齒的傳動,沿齒寬方向逐漸進入嚙合,直到全部齒寬都進入嚙合,所以斜齒輪的實際嚙合區(qū)域比直齒輪的大。當齒寬一定時,斜齒輪的重合度隨螺旋角增加而增加。承載能力也就越強,平穩(wěn)性也就越好。從理論上講,螺旋角越大越好,但螺旋角增大,會使軸向分力也增大,從而使得傳遞效率降低了。
在現代變速箱的設計中,為了保證齒輪傳動的平穩(wěn)性、低噪聲和少沖擊,所有齒輪都要選擇較大的螺旋角,一般都在30°左右。對于高速檔齒輪由于轉速較高,要求平穩(wěn),少沖擊,低噪聲,因此采用小模數,大螺旋角;而低速檔齒輪則用較大模數,較小螺旋角。
4、合理選用正角度變位
對于具有良好潤滑條件的硬齒面齒輪傳動,一般認為其主要危險是在循環(huán)交變應力作用下,齒根的疲勞裂紋逐漸擴張造成齒根斷裂而失效。變速箱中齒輪失效正是屬于這一種。為了避免輪齒折斷,應盡量提高齒根彎曲強度,而運用正變位,則可達到這個目的。一般情況下,變位系數越大,齒形系數值就越小,輪齒上彎曲應力越小,輪齒彎曲強度就越高。
在硬齒面的齒輪傳動中,齒面點蝕剝落也是失效原因之一。增大嚙合角,可降低齒面間的接觸應力和最大滑動率,能大大提高抗點蝕能力。而增大嚙合角,則必須對一副齒輪都實行正變位,這樣既可提高齒面的接觸強度,又可提高齒根的彎曲強度,從而達到提高齒輪的承載能力效果。但是,對于斜齒輪傳動,變位系數過大,又會使輪齒總的接觸線長度縮短,反而降低其承載能力。同時,變位系數越大,由于齒頂圓要隨之增大,其齒頂厚度將會變小,這會影響齒頂的強度。
因此在現代變速箱的設計中,大多數齒輪均合理采用正角度變位,以最大限度發(fā)揮其優(yōu)點。主要有以下幾個設計準則:
l 對于低速檔齒輪副來說,主動齒輪的變位系數應大于被動齒輪的變位系數,而對高速檔齒輪副,其主動齒輪的變位系數應小于被動齒輪的變位系數。
l 主動齒輪的變位系數隨檔位的升高而逐漸下降。這是因為低檔區(qū)由于轉速低、扭矩大,齒輪強度要求高,因此需采用較da的變位系數。
l 各檔齒輪的總變位系數都是正的(屬于角變位修正),而且隨著檔位的升高而逐漸減小。總變位系數越小,一對齒輪副的齒根總的厚度就越薄,齒根就越弱,其抗彎強度就越 低,但是由于輪齒的剛度減小,易于吸收沖擊振動,故可降低噪聲。而且齒形重合度會增加,這使得單齒承受最大載荷時的著力點距齒根近,使得彎曲力矩減小,相當于提高了齒根強度,這對由于齒根減薄而消弱強度的因素有所抵消。所以總變位系數越大,則齒根強度越高,但噪聲則有可能增大。因此高速檔齒輪要選擇較小的總變位系數,而低速檔齒輪則必須選用較大的總變位系數。
5、提高齒頂高系數
齒頂高系數在傳動質量指標中,影響著重合度,在斜齒輪中主要影響端面重合度。由端面重合度的公式可知,當齒數和嚙合角一定時,齒頂圓壓力角是受齒頂高系數影響的,齒頂高系數越大,齒頂圓壓力角也越大,重合度也就越大,傳動也就越平穩(wěn)。但是,齒頂高系數越大,齒頂厚度就會越薄,從而影響齒頂強度。同時,從最少不根切齒數公式來看,齒頂高系數越大,最少不根切齒數就會增加,否則的話,就會產生根切。因此,在保證不根切和齒頂強度足夠的情況下,增大齒頂高系數,對于增加重合度是有意義的。
因此在現代變速箱的設計中,各檔齒輪的齒頂高系數都選擇較大的值,一般都大于1.0,稱為細高齒,這對降低噪聲,增加傳動平穩(wěn)性都有明顯的效果。對于低速檔齒輪,為了保證其具有足夠的齒根彎曲強度,一般選用較小的齒頂高系數;而高速檔齒輪,為了保證其傳動的平穩(wěn)性和低噪聲,一般選用較大的齒頂高系數。
以上是從模數、壓力角、螺旋角、變位系數和齒頂高系數這五個方面去獨立分析齒輪設計趨勢。實際上各個參數之間是互相影響、互相牽連的,在選擇變速箱的參數時,既要考慮它們的優(yōu)缺點,又要考慮它們之間的相互關系,從而以最大限度發(fā)揮其長處,避免短處,改善變速箱的使用性能。
收藏