可逆過程與可逆過程體積功的計算

上傳人:y****3 文檔編號:23179399 上傳時間:2021-06-05 格式:PPT 頁數(shù):25 大?。?.29MB
收藏 版權申訴 舉報 下載
可逆過程與可逆過程體積功的計算_第1頁
第1頁 / 共25頁
可逆過程與可逆過程體積功的計算_第2頁
第2頁 / 共25頁
可逆過程與可逆過程體積功的計算_第3頁
第3頁 / 共25頁

下載文檔到電腦,查找使用更方便

20 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《可逆過程與可逆過程體積功的計算》由會員分享,可在線閱讀,更多相關《可逆過程與可逆過程體積功的計算(25頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、狀 態(tài) 1 狀 態(tài) 2 2.8 可 逆 過 程 與 可 逆 過 程 體 積 功 的 計 算1. 可 逆 過 程 與 不 可 逆 過 程 例 如 : p外 = p-dp, 則 系 統(tǒng) 會 無 限 緩 慢 地 膨 脹 ; 再 如 : T外 =T- dT ,系 統(tǒng) 會 放 熱 Q 給 環(huán) 境 。 系 統(tǒng) 內 部 及 系 統(tǒng) 與 環(huán) 境 間 在 一 系 列 無 限 接 近 平 衡 條 件下 進 行 的 過 程 稱 為 可 逆 過 程 。狀 態(tài) 1狀 態(tài) 2狀 態(tài) 1 狀 態(tài) 2自 然 界 發(fā) 生 的 任 何 變 化 都 是 不 可 逆 過 程 。 對 于 不 可 逆 過 程 , 無 論 采 取 何 種

2、 措 施 使 系 統(tǒng) 恢 復 原 狀時 , 都 不 可 能 使 環(huán) 境 也 恢 復 原 狀 .系 統(tǒng) 復 原 ,環(huán) 境 復 原系 統(tǒng) 復 原 ,環(huán) 境 不 可 能 復 原 對 可 逆 過 程 : VpW d r 環(huán)2 可 逆 過 程 體 積 功 的 計 算 公 式VpW VV d21r 系 VpW VV dr 21Vp d系 Vpp dd 系 VpVp ddd 系 VpW d 環(huán) VpWr d3 理 想 氣 體 恒 溫 可 逆 過 程 VVnRTVV d21 12lnVVnRT12lnVVnRTWr 12ln ppnRTWr 例 18: 始 態(tài) T1 =300 K , p1 = 150 kPa

3、 的 2 mol某 理 想 氣 體 , 經 過 下 述 三 種 不同 途 徑 恒 溫 膨 脹 到 同 樣 的 末 態(tài) , p2 = 50 kPa 。 求 各 途 徑 的 體 積 功 。 b.先 反 抗 100 kPa 的 恒 外 壓 膨 脹 到 平 衡 , 再a. 反 抗 50kPa 的 恒 外 壓 一 次 膨 脹 到 末 態(tài) 。c.恒 溫 可 逆 膨 脹 到 末 態(tài)反 抗 50kPa 恒 外 壓 膨 脹 到 末 態(tài) 。 解 : a. 反 抗 50kPa 的 恒 外 壓 一 次 膨 脹 到 末 態(tài) 。c.恒 溫 可 逆 膨 脹 到 末 態(tài)b.先 反 抗 100 kPa 的 恒 外 壓 膨 脹

4、到 中 間 平 衡 態(tài) , 再 反 抗 50kPa 恒 外 壓 膨 脹 到 末 態(tài) 。W= W1 + W2 - 4.158 kJ 12ln ppnRTWr kJ485. 21 dVV VpW 外 = - 3.326 kJ= - p外 (V2 V1) 始 末 態(tài) 相 同 , 途 徑 不 同 , 功 不 同 途 徑 a、 b、 c所 做 的 功 在 p-V 圖 中 的 表 示一 次 反 抗 恒 外 壓 膨 脹 過 程 W p外 V p終 (V終 V始 ) p p始 p終 V 始 V終 V定 T p p始 p終 二 次 反 抗 恒 外 壓 膨 脹 過 程 W (W1+W2) 2V始 V終 V定 T1

5、 W -( W 1 W 2 W 3) (p2V1 p3V2 p終 V3)p p始 V 始 V終 V定 T1 2 3 W -(W 1 W 2 W 3+.) p su p始 V 始 V終 V定 T2系 統(tǒng) 對 環(huán) 境 做 功 ,可 逆 過 程 做 最 大 功 (-W) p1p1 V1T p2p2 V2T 一 粒 粒 取 走 砂 粒-dp恒 溫 可 逆 膨 脹 途 徑 所 做 的 功 在 p-V 圖 中 的 表 示 恒 溫 壓 縮 過 程 環(huán) 境 所 做 的 功 在 p-V 圖 中 的 表 示環(huán) 境 對 系 統(tǒng) 做 功 ,可 逆 過 程 做 最 小 功 (W) W W 1 W 2 W 3+. p p

6、2 p1 V2 V1 V定 T2 p p2 p1 恒 外 壓 壓 縮 過 程 W W1+W22V2 V1 V定 T1 p p2 p1 恒 外 壓 壓 縮 過 程W p外 V p終 (V終 V始 )V2 V1 V定 TW W 1 W 2 W 3 p p2 p1 V2 V1 V定 T1 2 3 總 結 , 可 逆 過 程 的 特 點 :(1) 推 動 力 無 限 小 , 系 統(tǒng) 內 部 及 系 統(tǒng) 和 環(huán) 境 間 都 無 限 接 近 平 衡 ,進 行 得 無 限 慢 ,(2)過 程 結 束 后 , 系 統(tǒng) 若 沿 原 途 徑 逆 向 進 行 恢 復 到 始 態(tài) , 則 環(huán) 境也 同 時 復 原 。

7、(3) 可 逆 過 程 系 統(tǒng) 對 環(huán) 境 做 最 大 功 , 環(huán) 境 對 系 統(tǒng) 做 最 小 功 。 4. 理 想 氣 體 絕 熱 可 逆 過 程絕 熱 可 逆 過 程 Qr=0: rr d WQU d rWU VpTnC ,V ddm VVRTTCVVnRTTnC VV dd :dd m,m, 即 CV,m為 定 值 , 與 溫 度 無 關 : VRTCV dlndln: m, 即 1212m, lnln VVRTTCV 11212 VVTT 111212 ppTT mVCRVVTT ,/1212 m,m,VpCC定 義 : 2211 VpVp 理 想 氣 體絕 熱 可 逆 過 程的 過

8、程 方 程 絕 熱 可 逆 過 程 體 積 功 的 計 算 UW r )VV(VpVVVp VV 11120000 1d121方 法 二 : )(d 12m,m,21 TTCnTCnU VTT V 0QWQU VpWr d 21 d00VV VVVp VnRTV d21方 法 一 : 由 絕 熱 可 逆 過 程 方 程 求 出 終 態(tài) 溫 度 T2, 再 求 體 積 功 . 例 19:某 雙 原 子 理 想 氣 體 1mol從 始 態(tài) 350K, 200kPa經 過 如 下 四 個 不 同 過 程 達到 各 自 的 平 衡 態(tài) , 求 各 過 程 的 Q, W, U及 H。 (1)恒 溫 可

9、逆 膨 脹 到 50kPa (2)恒 溫 反 抗 50kPa恒 外 壓 膨 脹 至 平 衡 (3)絕 熱 可 逆 膨 脹 到 50kPa (4)絕 熱 反 抗 50kPa恒 外 壓 膨 脹 至 平 衡 。 n=1mol pg,T1=350K p1 = 200 kPa n=1mol pg,T2= 350K p2 = 50 kPadT=0,可 逆 (1)dT=0,可 逆 是 理 想 氣 體 0d T 0U 0HkJ0344ln 12 .ppnRTWr WQU kJ0344.WQ (2)恒 溫 反 抗 50kPa恒 外 壓 膨 脹 至 平 衡 )VV(pVpW 12d 環(huán)環(huán) )( 1 112 22

10、PRTnPRTnp 環(huán)=-2.183 kJ WQU kJ1832.WQ n=1mol pg,T1=350K p1 = 200 kPa n=1mol pg,T2= 350K p2 = 50 kPadT=0, p外 =50kPa 是 理 想 氣 體 0d T 0U 0H (3)絕 熱 可 逆 膨 脹 到 50kPan=1mol pg,T1=350K p1 = 200 kPa n=1mol pg,T2= ? p2 = 50 kPaQ=0, 可 逆 11 1212 ppTT4.1m,m, VpCC KT 53.2352 kJ379.2)( 12m, TTCnU V kJ331.3)( 12, TTnC

11、H mp Q=0 kJ379.2 UW (4)絕 熱 反 抗 50kPa恒 外 壓 膨 脹 至 平 衡n=1mol pg,T1=350K p1 = 200 kPa n=1mol pg,T2= ? p2 = 50 kPaQ=0, 不 可逆 KT 0.275 2 )( 1212m, VVpTTCn V (環(huán) kJ182212 .)TT(nCH m,p Q=0 )( 1 12 212m, pnRTpnRTpTTCn V (環(huán) -1.559kJ)( 12m, TTCnU V U=W-1.559kJ UW 有 系 統(tǒng) 如 下 圖 單 原 子 pg,A pA1=150kPaTA1=300KVA1=10m3

12、 雙 原 子 pg,BpB1=300kPaTB1=400KVB1=5.0m3已 知 容 器 及 隔 板 絕 熱 良 好 , 抽 去 隔 板 后 A、 B混 合 達 到 平 衡 , 試 求 : 混 合 過 程 的HU 、例 20(混 合 過 程 ): mol4601 111 .RTVpn ,A ,A,AA mol0451111 .RTVpn ,B ,B,BB 單 原 子 pg,ApA1=150kPaTA1=300KVA1=10m3 雙 原 子 pg,BpB1=300kPaTB1=400KVB1=5.0m3 單 原 子 pg,A + 雙 原 子 pg,BpT2V=15m3Q=0,dV=00 UQQ

13、 V 0, 12,12, BmVBAmvA BA TTgBCnTTgACn UUU KT 55.3552 1212 Bm,pBAm,pA BA TTg,BCnTTg,ACn HHH 例 16: 求 1000K下 , 下 列 反 應 的 mrH已 知 298.15K, 下 列 熱 力 學 數(shù) 據(jù) :mfH -74.81 -285.83 -393.51 0 mp,C 35.31 33.58 37.10 28.82 /kJmol-1/Jmol-1K-1已 知 298.15K時 , 水 的 摩 爾 蒸 發(fā) 焓 為 44.01kJmol-1 若 在 溫 度 區(qū) 間 T1 到 T2 范 圍 內 , 反 應

14、 物 或 產 物 有 相 變 化CH4(g) H2O(g) CO2(g) H2(g)CH4(g) H2O(l) CO2(g) H2(g)CH4(g) + 2H2O(g) = CO2(g) + 4H2(g) T1 =1000K 4H (g)H4(g)COO(g)H2(g)CH 2224 )TT(CCH pp 122m,4m,1 g)O,(H2g),(CH 3H )15.298,()15.298( B mfBmr KBHKH )TT(CCH pp 212m,2m,4 g),(H4g),(CO .HHHH)K(H 4321mr 1000 設 計 過 程T2=298.15K 1H O(g)H2(g)C

15、H 24 2H )( 2 mvapmlg HHH 22 O(l)H2(g)CH 24 T2=298.15K 3H (g)H4(g)CO 22 恒 容 過 程 (dV= 0)恒 壓 過 程 (dp= 0)恒 溫 可 逆 過 程 (dT= 0,可 逆 )自 由 膨 脹 過 程 (p環(huán) =0)絕 熱 可 逆 過 程 ( Qr = 0)常 見 pg單 純 pVT變 化 過 程 :恒 溫 不 可 逆 過 程 (dT= 0)絕 熱 不 可 逆 過 程 ( Q = 0) Q W U H=0=0 =0 =0 =0=0 =0=0恒 溫 自 由 膨 脹 過 程 (p 環(huán) =0) =0 =0 =0=0 對 一 定 量 的 理 想 氣 體 , 下 列 過 程 能 否 進 行 ? 吸 熱 而 溫 度 不 變 恒 壓 下 絕 熱 膨 脹 恒 溫 下 對 外 做 功 , 同 時 放 熱 體 積 不 變 且 絕 熱 , 使 溫 度 上 升 吸 熱 體 積 縮 小 恒 溫 下 絕 熱 膨 脹 恒 壓 下 絕 熱 壓 縮 恒 溫 下 絕 熱 自 由 膨 脹 ( )( )( )( ) ( ) ( )( )( )

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!