高考數(shù)學二輪復習 專題跟蹤檢測(十二)直線與圓 理(重點生含解析)-人教版高三數(shù)學試題

上傳人:文*** 文檔編號:241357305 上傳時間:2024-06-20 格式:DOC 頁數(shù):10 大?。?01KB
收藏 版權申訴 舉報 下載
高考數(shù)學二輪復習 專題跟蹤檢測(十二)直線與圓 理(重點生含解析)-人教版高三數(shù)學試題_第1頁
第1頁 / 共10頁
高考數(shù)學二輪復習 專題跟蹤檢測(十二)直線與圓 理(重點生含解析)-人教版高三數(shù)學試題_第2頁
第2頁 / 共10頁
高考數(shù)學二輪復習 專題跟蹤檢測(十二)直線與圓 理(重點生含解析)-人教版高三數(shù)學試題_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學二輪復習 專題跟蹤檢測(十二)直線與圓 理(重點生含解析)-人教版高三數(shù)學試題》由會員分享,可在線閱讀,更多相關《高考數(shù)學二輪復習 專題跟蹤檢測(十二)直線與圓 理(重點生含解析)-人教版高三數(shù)學試題(10頁珍藏版)》請在裝配圖網上搜索。

1、專題跟蹤檢測(十二) 直線與圓 一、全練保分考法——保大分 1.過點(3,1)作圓(x-1)2+y2=r2的切線有且只有一條,則該切線的方程為(  ) A.2x+y-5=0       B.2x+y-7=0 C.x-2y-5=0 D.x-2y-7=0 解析:選B ∵過點(3,1)作圓(x-1)2+y2=r2的切線有且只有一條, ∴點(3,1)在圓(x-1)2+y2=r2上, ∵圓心與切點連線的斜率k==, ∴切線的斜率為-2, 則圓的切線方程為y-1=-2(x-3), 即2x+y-7=0. 2.圓心在直線x+2y=0上的圓C與y軸的負半軸相切,圓C截x軸所得的弦長為2

2、,則圓C的標準方程為(  ) A.(x-2)2+(y+)2=8 B.(x-)2+(y+2)2=8 C.(x-2)2+(y+)2=8 D.(x-)2+(y+2)2=8 解析:選A 法一:設圓心為(r>0),半徑為r.由勾股定理()2+2=r2,解得r=2,∴圓心為(2,-),∴圓C的標準方程為(x-2)2+(y+)2=8. 法二:四個圓的圓心分別為(2,-),(,-2),(2,-),(,-2),將它們逐一代入x+2y=0,只有A選項滿足. 3.已知圓M:x2+y2-2ay=0(a>0)截直線x+y=0所得線段的長度是2.則圓M與圓N:(x-1)2+(y-1)2=1的位置關系是(  

3、) A.內切 B.相交 C.外切 D.相離 解析:選B 由題意知圓M的圓心為(0,a),半徑R=a,因為圓M截直線x+y=0所得線段的長度為2,所以圓心M到直線x+y=0的距離d==(a>0),解得a=2,即圓M的圓心為(0,2),又知圓N的圓心為(1,1),半徑r=1,所以|MN|=,則R-r<

4、,所以|AB|=2=2,過C作CE⊥BD于E,因為直線l的傾斜角為30°, 所以|CD|====4. 法二:由x-y+6=0與x2+y2=12聯(lián)立解得A(-3,),B(0,2),∴AC的方程為y-=-(x+3),BD的方程為y-2=-x,可得C(-2,0),D(2,0),所以|CD|=4. 5.已知A(0,3),B,P為圓C:x2+y2=2x上的任意一點,則△ABP面積的最大值為(  ) A. B. C.2 D. 解析:選A 圓C的方程可化為(x-1)2+y2=1, 因為A(0,3),B, 所以|AB|==3,直線AB的方程為x+y=3, 所以圓心(1,0)到直線AB

5、的距離d==.又圓C的半徑為1,所以圓C上的點到直線AB的最大距離為+1,故△ABP面積的最大值為Smax=×(+1)×3=. 6.已知等邊三角形OAB的三個頂點都在拋物線y2=2x上,其中O為坐標原點,設圓C是△OAB的外接圓(點C為圓心),則圓C的方程為(  ) A.(x-4)2+y2=16 B.(x+4)2+y2=16 C.x2+(y-4)2=16 D.x2+(y+4)2=16 解析:選A 法一:設A,B兩點的坐標分別為,,由題設知== , 解得y=y(tǒng)=12,所以A(6,2),B(6,-2)或A(6,-2),B(6,2). 設圓心C的坐標為(r,0)(r>0),則r=

6、×6=4, 所以圓C的方程為(x-4)2+y2=16. 法二:設A,B兩點的坐標分別為(x1,y1),(x2,y2)(x1>0,x2>0),由題設知x+y=x+y. 又y=2x1,y=2x2,故x+2x1=x+2x2, 即(x1-x2)·(x1+x2+2)=0, 由x1>0,x2>0,可知x1=x2,故A,B兩點關于x軸對稱,所以圓心C在x軸上. 設點C的坐標為(r,0)(r>0),則點A的坐標為,于是2=2×r,解得r=4,所以圓C的方程為(x-4)2+y2=16. 7.設M,N分別為圓O1:x2+y2-12y+34=0和圓O2:(x-2)2+y2=4上的動點,則M,N兩點間的

7、距離的取值范圍是________. 解析:圓O1的方程可化為x2+(y-6)2=2,其圓心為O1(0,6),半徑r1=.圓O2的圓心O2(2,0),半徑r2=2,則|O1O2|==2,則|MN|max=2+2+,|MN|min=2-2-,故M,N兩點間的距離的取值范圍是[2-2-,2+2+]. 答案:[2-2-,2+2+] 8.過點P(-3,1),Q(a,0)的光線經x軸反射后與圓x2+y2=1相切,則a的值為________. 解析:點P(-3,1)關于x軸對稱的點為P′(-3,-1), 所以直線P′Q的方程為x-(a+3)y-a=0, 由題意得直線P′Q與圓x2+y2=1相切,

8、 所以=1, 解得a=-. 答案:- 9.已知圓C過點(1,0),且圓心在x軸的正半軸上,直線l:y=x-1被圓C所截得的弦長為2,則過圓心且與直線l垂直的直線的方程為________________. 解析:由題意,設所求的直線方程為x+y+m=0,圓心坐標為(a,0)(a>0), 則由題意知2+2=(a-1)2, 解得a=3或-1(舍去), 故圓心坐標為(3,0), 因為圓心(3,0)在所求的直線上, 所以3+0+m=0, 解得m=-3, 故所求的直線方程為x+y-3=0. 答案:x+y-3=0 10.(2018·全國卷Ⅱ)設拋物線C:y2=4x的焦點為F,過F

9、且斜率為k(k>0)的直線l與C交于A,B兩點,|AB|=8. (1)求l的方程; (2)求過點A,B且與C的準線相切的圓的方程. 解:(1)由題意得F(1,0),l的方程為y=k(x-1)(k>0). 設A(x1,y1),B(x2,y2), 由得k2x2-(2k2+4)x+k2=0. Δ=16k2+16>0,故x1+x2=. 所以|AB|=|AF|+|BF| =(x1+1)+(x2+1)=. 由題設知=8, 解得k=1或k=-1(舍去). 因此l的方程為y=x-1. (2)由(1)得AB的中點坐標為(3,2), 所以AB的垂直平分線方程為y-2=-(x-3), 即

10、y=-x+5. 設所求圓的圓心坐標為(x0,y0), 則 解得或 因此所求圓的方程為(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144. 11.(2018·成都模擬)在平面直角坐標系xOy中,曲線Г:y=x2-mx+2m(m∈R)與x軸交于不同的兩點A,B,曲線Г與y軸交于點C. (1)是否存在以AB為直徑的圓過點C?若存在,求出該圓的方程;若不存在,請說明理由. (2)求證:過A,B,C三點的圓過定點. 解:由曲線Г:y=x2-mx+2m(m∈R), 令y=0,得x2-mx+2m=0.設A(x1,0),B(x2,0), 則可得Δ=m2-8m>0, 解

11、得m>8或m<0,x1+x2=m,x1x2=2m. 令x=0,得y=2m,即C(0,2m). (1)若存在以AB為直徑的圓過點C,則·=0, 得x1x2+4m2=0, 即2m+4m2=0, 所以m=0(舍去)或m=-. 所以m=-, 此時C(0,-1),AB的中點M即圓心, 半徑r=|CM|=, 故所求圓的方程為2+y2=. (2)證明:設過A,B兩點的圓的方程為 x2+y2-mx+Ey+2m=0, 將點C(0,2m)代入可得E=-1-2m, 所以過A,B,C三點的圓的方程為 x2+y2-mx-(1+2m)y+2m=0, 整理得x2+y2-y-m(x+2y-2)=

12、0. 令可得或 故過A,B,C三點的圓過定點(0,1)和. 12.(2019屆高三·廣州調研)在平面直角坐標系xOy中,已知圓C與y軸相切,且過點M(1,),N(1,-). (1)求圓C的方程; (2)已知直線l與圓C交于A,B兩點,且直線OA與直線OB的斜率之積為-2.求證:直線l恒過定點,并求出定點的坐標. 解:(1)因為圓C過點M(1,),N(1,-), 所以圓心C在線段MN的垂直平分線上,即在x軸上, 故設圓心為C(a,0),易知a>0, 又圓C與y軸相切,所以圓C的半徑r=a, 所以圓C的方程為(x-a)2+y2=a2. 因為點M(1,)在圓C上, 所以(1-

13、a)2+()2=a2,解得a=2. 所以圓C的方程為(x-2)2+y2=4. (2)證明:記直線OA的斜率為k(k≠0),則其方程為y=kx. 聯(lián)立消去y,得(k2+1)x2-4x=0, 解得x1=0,x2=. 所以A. 由k·kOB=-2,得kOB=-, 直線OB的方程為y=-x, 在點A的坐標中用-代換k,得B. 當直線l的斜率不存在時,=,得k2=2,此時直線l的方程為x=. 當直線l的斜率存在時,≠,即k2≠2, 則直線l的斜率為 ===. 故直線l的方程為y-=, 即y=, 所以直線l過定點. 綜上,直線l恒過定點,定點坐標為. 二、強化壓軸考法

14、——拉開分 1.已知圓C:x2+y2=1,點P(x0,y0)在直線l:3x+2y-4=0上,若在圓C上總存在兩個不同的點A,B,使+=,則x0的取值范圍是(  ) A. B. C. D. 解析:選C 如圖,∵+=, ∴OP與AB互相垂直平分, ∴圓心到直線AB的距離 <1, ∴x+y<4.?、? 又3x0+2y0-4=0, ∴y0=2-x0, 代入①得x+2<4, 解得0

15、解析:選C 設A(x1,y1),B(x2,y2),則=(-x1,-y1),=(x2-x1,y2-y1),由消去y,整理得,2x2+2mx+m2-1=0,故Δ=4m2-8(m2-1)=8-4m2>0,-

16、_____. 解析:易知點A(1,)在圓(x-2)2+y2=4的內部,圓心C的坐標為(2,0),要使劣弧所對的圓心角最小,只能是直線l⊥CA,所以kl=-=-=. 答案: 4.已知圓O:x2+y2=1與x軸負半軸的交點為A,P為直線3x+4y-a=0上一點,過P作圓O的切線,切點為T,若|PA|=2|PT|,則實數(shù)a的最大值為________. 解析:由題意知A(-1,0),設P(x,y),由|PA|=2|PT|可得(x+1)2+y2=4(x2+y2-1),化簡得2+y2=.由3x+4y-a=0與圓2+y2=有公共點P,所以圓心到直線3x+4y-a=0的距離d=≤,解得-≤a≤,所以實

17、數(shù)a的最大值為. 答案: 5.已知圓O:x2+y2=1,圓M:(x-a)2+(y-a+4)2=1.若圓M上存在點P,過點P作圓O的兩條切線,切點分別為A,B,使得∠APB=60°,則實數(shù)a的取值范圍為_________. 解析:圓O的半徑為1,圓M上存在點P,過點P作圓O的兩條切線,切點分別為A,B, 使得∠APB=60°,則∠APO=30°. 在Rt△PAO中,|PO|=2, 又圓M的半徑為1,圓心坐標為M(a,a-4), ∴|MO|-1≤|PO|≤|MO|+1, ∵|MO|=, ∴ -1≤2≤ +1, 解得2-≤a≤2+. ∴實數(shù)a的取值范圍為. 答案: 6.(2

18、018·廣州高中綜合測試)已知定點M(1,0)和N(2,0),動點P滿足|PN|=|PM|. (1)求動點P的軌跡C的方程; (2)若A,B為(1)中軌跡C上兩個不同的點,O為坐標原點.設直線OA,OB,AB的斜率分別為k1,k2,k.當k1k2=3時,求k的取值范圍. 解:(1)設動點P的坐標為(x,y), 因為M(1,0),N(2,0),|PN|=|PM|, 所以 =·. 整理得,x2+y2=2. 所以動點P的軌跡C的方程為x2+y2=2. (2)設點A(x1,y1),B(x2,y2),直線AB的方程為y=kx+ B. 由消去y,整理得(1+k2)x2+2bkx+b2-2

19、=0.(*) 由Δ=(2bk)2-4(1+k2)(b2-2)>0,得b2<2+2k2.① 由根與系數(shù)的關系,得x1+x2=-,x1x2=.② 由k1·k2=·=·=3, 得(kx1+b)(kx2+b)=3x1x2, 即(k2-3)x1x2+bk(x1+x2)+b2=0. ③ 將②代入③,整理得b2=3-k2. ④ 由④得b2=3-k2≥0,解得-≤k≤. ⑤ 由①和④,解得k<-或k>. ⑥ 要使k1,k2,k有意義,則x1≠0,x2≠0, 所以0不是方程(*)的根, 所以b2-2≠0,即k≠1且k≠-1. ⑦ 由⑤⑥⑦,得k的取值范圍為 [-,-1)∪∪∪(1, ].

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!