《高中數(shù)學(xué)(北師大版)選修2-2教案:第2章 變化的快慢與變化率 第一課時(shí)參考教案》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)(北師大版)選修2-2教案:第2章 變化的快慢與變化率 第一課時(shí)參考教案(7頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
1變化的快慢與變化率
第一課時(shí) 變化的快慢與變化率——平均變化率
一、教學(xué)目標(biāo):1、理解函數(shù)平均變化率的概念;
2、會(huì)求給定函數(shù)在某個(gè)區(qū)間上的平均變化率,并能根據(jù)函數(shù)的平均變化率判斷函數(shù)在某區(qū)間上變化的快慢。
二、教學(xué)重點(diǎn):從變化率的角度重新認(rèn)識(shí)平均速度的概念,知道函數(shù)平均變化率就是函數(shù)在某區(qū)間上變化的快慢的數(shù)量描述。
教學(xué)難點(diǎn):對(duì)平均速度的數(shù)學(xué)意義的認(rèn)識(shí)
三、教學(xué)方法:探析歸納,講練結(jié)合
四、教學(xué)過程
(一)、客觀世界的一切事物,小至粒子,大至宇宙,始終都在運(yùn)動(dòng)和變化著。因此在數(shù)學(xué)中引入了變量的概念后,就有可能把運(yùn)動(dòng)現(xiàn)象用數(shù)學(xué)來加以描述了。由于函數(shù)概念的產(chǎn)生和運(yùn)用
2、的加深,也由于科學(xué)技術(shù)發(fā)展的需要,一門新的數(shù)學(xué)分支就繼解析幾何之后產(chǎn)生了,這就是微積分學(xué)。微積分學(xué)這門學(xué)科在數(shù)學(xué)發(fā)展中的地位是十分重要的,可以說它是繼歐氏幾何后,全部數(shù)學(xué)中的最大的一個(gè)創(chuàng)造。
從微積分成為一門學(xué)科來說,是在十七世紀(jì),但是,微分和積分的思想在古代就已經(jīng)產(chǎn)生了。公元前三世紀(jì),古希臘的阿基米德在研究解決拋物弓形的面積、球和球冠面積、螺線下面積和旋轉(zhuǎn)雙曲體的體積的問題中,就隱含著近代積分學(xué)的思想。十七世紀(jì),有許多科學(xué)問題需要解決,這些問題也就成了促使微積分產(chǎn)生的因素。歸結(jié)起來,大約有四種主要類型的問題:
第一類是研究運(yùn)動(dòng)的時(shí)候直接出現(xiàn)的,也就是求即時(shí)速度的問題。
第二類問題是求曲
3、線的切線的問題。
第三類問題是求函數(shù)的最大值和最小值問題。第四類問題是求曲線長、曲線圍成的面積、曲面圍成的體積、物體的重心、一個(gè)體積相當(dāng)大的物體作用于另一物體上的引力。
十七世紀(jì)的許多著名的數(shù)學(xué)家、天文學(xué)家、物理學(xué)家都為解決上述幾類問題作了大量的研究工作,如法國的費(fèi)爾瑪、笛卡爾、羅伯瓦、笛沙格;英國的巴羅、瓦里士;德國的開普勒;意大利的卡瓦列利等人都提出許多很有建樹的理論。為微積分的創(chuàng)立做出了貢獻(xiàn)。
- 2 - / 7
十七世紀(jì)下半葉,在前人工作的基礎(chǔ)上,英國大科學(xué)家牛頓和德國數(shù)學(xué)家萊布尼茨分別在自己的國度里獨(dú)自研究和完成了微積分的創(chuàng)立工作,雖然這只是十分初步的工作。他們的最大功績
4、是把兩個(gè)貌似毫不相關(guān)的問題聯(lián)系在一起,一個(gè)是切線問題(微分學(xué)的中心問題),一個(gè)是求積問題(積分學(xué)的中心問題)。牛頓和萊布尼茨建立微積分的出發(fā)點(diǎn)是直觀的無窮小量,因此這門學(xué)科早期也稱為無窮小分析,這正是現(xiàn)在數(shù)學(xué)中分析學(xué)這一大分支名稱的來源。牛頓研究微積分著重于從運(yùn)動(dòng)學(xué)來考慮,萊布尼茨卻是側(cè)重于幾何學(xué)來考慮的。牛頓在1671年寫了《流數(shù)法和無窮級(jí)數(shù)》,這本書直到1736年才出版,它在這本書里指出,變量是由點(diǎn)、線、面的連續(xù)運(yùn)動(dòng)產(chǎn)生的,否定了以前自己認(rèn)為的變量是無窮小元素的靜止集合。他把連續(xù)變量叫做流動(dòng)量,把這些流動(dòng)量的導(dǎo)數(shù)叫做流數(shù)。牛頓在流數(shù)術(shù)中所提出的中心問題是:已知連續(xù)運(yùn)動(dòng)的路徑,求給定時(shí)刻的速
5、度(微分法);已知運(yùn)動(dòng)的速度求給定時(shí)間內(nèi)經(jīng)過的路程(積分法)。德國的萊布尼茨是一個(gè)博才多學(xué)的學(xué)者,1684年,他發(fā)表了現(xiàn)在世界上認(rèn)為是最早的微積分文獻(xiàn),這篇文章有一個(gè)很長而且很古怪的名字《一種求極大極小和切線的新方法,它也適用于分式和無理量,以及這種新方法的奇妙類型的計(jì)算》。就是這樣一片說理也頗含糊的文章,卻有劃時(shí)代的意義。他以含有現(xiàn)代的微分符號(hào)和基本微分法則。1686年,萊布尼茨發(fā)表了第一篇積分學(xué)的文獻(xiàn)。他是歷史上最偉大的符號(hào)學(xué)者之一,他所創(chuàng)設(shè)的微積分符號(hào),遠(yuǎn)遠(yuǎn)優(yōu)于牛頓的符號(hào),這對(duì)微積分的發(fā)展有極大的影響?,F(xiàn)在我們使用的微積分通用符號(hào)就是當(dāng)時(shí)萊布尼茨精心選用的。微積分學(xué)的創(chuàng)立,極大地推動(dòng)了數(shù)
6、學(xué)的發(fā)展,過去很多初等數(shù)學(xué)束手無策的問題,運(yùn)用微積分,往往迎刃而解,顯示出微積分學(xué)的非凡威力。
研究函數(shù),從量的方面研究事物運(yùn)動(dòng)變化是微積分的基本方法。這種方法叫做數(shù)學(xué)分析。
本來從廣義上說,數(shù)學(xué)分析包括微積分、函數(shù)論等許多分支學(xué)科,但是現(xiàn)在一般已習(xí)慣于把數(shù)學(xué)分析和微積分等同起來,數(shù)學(xué)分析成了微積分的同義詞,一提數(shù)學(xué)分析就知道是指微積分。微積分的基本概念和內(nèi)容包括微分學(xué)和積分學(xué)。
微分學(xué)的主要內(nèi)容包括:極限理論、導(dǎo)數(shù)、微分等。
積分學(xué)的主要內(nèi)容包括:定積分、不定積分等。
微積分是與應(yīng)用聯(lián)系著發(fā)展起來的,最初牛頓應(yīng)用微積分學(xué)及微分方程為了從萬有引力定律導(dǎo)出了開普勒行星運(yùn)動(dòng)三定律
7、。此后,微積分學(xué)極大的推動(dòng)了數(shù)學(xué)的發(fā)展,同時(shí)也極大的推動(dòng)了天文學(xué)、力學(xué)、物理學(xué)、化學(xué)、生物學(xué)、工程學(xué)、經(jīng)濟(jì)學(xué)等自然科學(xué)、社會(huì)科學(xué)及應(yīng)用科學(xué)各個(gè)分支中的發(fā)展。并在這些學(xué)科中有越來越廣泛的應(yīng)用,特別是計(jì)算機(jī)的出現(xiàn)更有助于這些應(yīng)用的不斷發(fā)展。
(二)、探析新課
問題1:物體從某一時(shí)刻開始運(yùn)動(dòng),設(shè)s表示此物體經(jīng)過時(shí)間t走過的路程,顯然s是時(shí)間t的函數(shù),表示為s=s(t)
在運(yùn)動(dòng)的過程中測(cè)得了一些數(shù)據(jù),如下表:
t/s
0
2
5
10
13
15
…
s/m
0
6
9
20
32
44
…
物體在0~2s和10~13s這兩段時(shí)間內(nèi),那一段時(shí)間運(yùn)動(dòng)得快?
分析
8、:我們通常用平均速度來比較運(yùn)動(dòng)的快慢。
在0~2s這段時(shí)間內(nèi),物體的平均速度為;
在10~13s這段時(shí)間內(nèi),物體的平均速度為。
顯然,物體在后一段時(shí)間比前一段時(shí)間運(yùn)動(dòng)得快。
問題2:某病人吃完退燒藥,他的體溫變化如下圖所示:
比較時(shí)間x從0min到20min和從20min到30min體溫的變化情況,哪段時(shí)間體溫變化較快?如何刻畫體溫變化的快慢?
分析:根據(jù)圖像可以看出:
當(dāng)時(shí)間x從0min到20min時(shí),體溫y從39℃變?yōu)?8.5℃,下降了0.5℃;
當(dāng)時(shí)間x從20min到30min時(shí),體溫y從38.5℃變?yōu)?8℃,下降了0.5℃。
兩段時(shí)間下降相同的溫度,而后一
9、段時(shí)間比前一段時(shí)間短,所以后一段時(shí)間的體溫比前一段時(shí)間下降得快。
我們也可以比較在這兩段時(shí)間中,單位時(shí)間內(nèi)體溫的平均變化量,于是當(dāng)時(shí)間x從0min到20min時(shí),體溫y相對(duì)于時(shí)間x的平均變化率為
(℃/min)
當(dāng)時(shí)間x從20min到30min時(shí),體溫y相對(duì)于時(shí)間x的平均變化率為
(℃/min)
這里出現(xiàn)了負(fù)號(hào),它表示體溫下降了,顯然,絕對(duì)值越大,下降的越快,這里體溫從20min到30min這段時(shí)間下降的比0min到20min這段時(shí)間要快。
(三)、小結(jié):1、對(duì)一般的函數(shù)y=f(x)來說,當(dāng)自變量x從變?yōu)闀r(shí),函數(shù)值從f()變?yōu)椤F骄兓示褪呛瘮?shù)增量與自變量增量之比,函數(shù)在內(nèi)的平均變化率為,如我們常用到年產(chǎn)量的平均變化率。2、函數(shù)的平均變化率與函數(shù)單調(diào)性之間的關(guān)系。
(四)、練習(xí):P27頁練習(xí)1,2,3,4題;習(xí)題2-1中 1
(五)作業(yè)布置:1、已知曲線上兩點(diǎn)的橫坐標(biāo)是和,求過兩點(diǎn)的直線斜率。
2、一物體按規(guī)律作變速直線運(yùn)動(dòng),求該物體從2秒末到6秒末這段時(shí)間內(nèi)的平
均速度。
五、教后反思:
希望對(duì)大家有所幫助,多謝您的瀏覽!