高中數(shù)學(xué) 第二章 平面向量 2.2 平面向量的線性運(yùn)算 2.2.3 向量數(shù)乘運(yùn)算及其幾何意義學(xué)案 新人教A版必修4

上傳人:仙*** 文檔編號(hào):39033338 上傳時(shí)間:2021-11-09 格式:DOC 頁(yè)數(shù):7 大小:176KB
收藏 版權(quán)申訴 舉報(bào) 下載
高中數(shù)學(xué) 第二章 平面向量 2.2 平面向量的線性運(yùn)算 2.2.3 向量數(shù)乘運(yùn)算及其幾何意義學(xué)案 新人教A版必修4_第1頁(yè)
第1頁(yè) / 共7頁(yè)
高中數(shù)學(xué) 第二章 平面向量 2.2 平面向量的線性運(yùn)算 2.2.3 向量數(shù)乘運(yùn)算及其幾何意義學(xué)案 新人教A版必修4_第2頁(yè)
第2頁(yè) / 共7頁(yè)
高中數(shù)學(xué) 第二章 平面向量 2.2 平面向量的線性運(yùn)算 2.2.3 向量數(shù)乘運(yùn)算及其幾何意義學(xué)案 新人教A版必修4_第3頁(yè)
第3頁(yè) / 共7頁(yè)

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué) 第二章 平面向量 2.2 平面向量的線性運(yùn)算 2.2.3 向量數(shù)乘運(yùn)算及其幾何意義學(xué)案 新人教A版必修4》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 第二章 平面向量 2.2 平面向量的線性運(yùn)算 2.2.3 向量數(shù)乘運(yùn)算及其幾何意義學(xué)案 新人教A版必修4(7頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 2.2.3 向量數(shù)乘運(yùn)算及其幾何意義 學(xué)習(xí)目標(biāo):1.了解向量數(shù)乘的概念并理解數(shù)乘運(yùn)算的幾何意義.(重點(diǎn))2.理解并掌握向量數(shù)乘的運(yùn)算律,會(huì)進(jìn)行向量的數(shù)乘運(yùn)算.(重點(diǎn))3.理解并掌握兩向量共線的性質(zhì)及判定方法,并能熟練地運(yùn)用這些知識(shí)處理有關(guān)向量共線問(wèn)題.(難點(diǎn))4.理解實(shí)數(shù)相乘與向量數(shù)乘的區(qū)別.(易混點(diǎn)) [自 主 預(yù) 習(xí)探 新 知] 1.向量的數(shù)乘運(yùn)算 定義 實(shí)數(shù)λ與向量a的乘積是一個(gè)向量 記法 λa 長(zhǎng)度 |λa|=|λ||a| 方向 λ>0 方向與a的方向相同 λ<0 方向與a的方向相反 思考:(1)何時(shí)有λa=0? (2)從幾何角度考慮,向量2a和-a

2、與向量a分別有什么關(guān)系? [提示] (1)若λ=0或a=0則λa=0. (2)2a與a方向相同,2a的長(zhǎng)度是a的長(zhǎng)度的2倍,-a與a方向相反,-a的長(zhǎng)度是a的長(zhǎng)度的. 2.向量的數(shù)乘運(yùn)算的運(yùn)算律 設(shè)λ,μ為任意實(shí)數(shù) ①λ(μa)=(λμ)a; ②(λ+μ)a=λa+μa; ③λ(a+b)=λa+λb. 3.共線向量定理 向量a(a≠0)與b共線,當(dāng)且僅當(dāng)有唯一一個(gè)實(shí)數(shù)λ,使得b=λa. 4.向量的線性運(yùn)算 向量的加、減、數(shù)乘運(yùn)算統(tǒng)稱為向量的線性運(yùn)算.對(duì)于任意向 量a,b,以及任意實(shí)數(shù)λ,μ1,μ2,恒有λ(μ1aμ2b)=λμ1aλμ2b. [基礎(chǔ)自測(cè)] 1.思考辨

3、析 (1)對(duì)于任意的向量a,總有0a=0.(  ) (2)當(dāng)λ>0時(shí),|λa|=λa.(  ) (3)若a≠0,λ≠0,則a與-λa的方向相反.(  ) [解析] (1)錯(cuò)誤.0a=0;(2)錯(cuò)誤.|λa|=λ|a|(λ>0).(3)錯(cuò)誤.當(dāng)λ<0時(shí),-λ>0,a與-λa的方向相同. [答案] (1) (2) (3) 2.點(diǎn)C是線段AB靠近點(diǎn)B的三等分點(diǎn),下列正確的是(  ) A.=3       B.=2 C.= D.=2 D [由題意可知:=-3;=-2=2.故只有D正確.] 3.如圖2227,在平行四邊形ABCD中,對(duì)角線AC與BD交于點(diǎn)O,+=λ,則λ=____

4、____. 圖2227 2 [由向量加法的平行四邊形法則知+=. 又∵O是AC的中點(diǎn),∴AC=2AO, ∴=2,∴+=2, ∴λ=2.] [合 作 探 究攻 重 難] 向量的線性運(yùn)算  (1)若3(x+a)+2(x-2a)-4(x-a+b)=0,則x=________. (2)化簡(jiǎn)下列各式: ①3(6a+b)-9; ②-2; ③2(5a-4b+c)-3(a-3b+c)-7a. (1)4b-3a [(1)由已知得3x+3a+2x-4a-4x+4a-4b=0,所以x+3a-4b=0,所以x=4b-3a. (2)①原式=18a+3b-9a-3b=9a. ②原式=

5、-a-b=a+b-a-b=0. ③原式=10a-8b+2c-3a+9b-3c-7a=b-c.] [規(guī)律方法]  向量數(shù)乘運(yùn)算的方法 (1)向量的數(shù)乘運(yùn)算類似于多項(xiàng)式的代數(shù)運(yùn)算,實(shí)數(shù)運(yùn)算中的去括號(hào)、移項(xiàng)、合并同類項(xiàng)、提取公因式等變形手段在數(shù)與向量的乘積中同樣適用,但是這里的“同類項(xiàng)”“公因式”指向量,實(shí)數(shù)看作是向量的系數(shù). (2)向量也可以通過(guò)列方程來(lái)解,把所求向量當(dāng)作未知數(shù),利用解代數(shù)方程的方法求解,同時(shí)在運(yùn)算過(guò)程中要多注意觀察,恰當(dāng)運(yùn)用運(yùn)算律,簡(jiǎn)化運(yùn)算. [跟蹤訓(xùn)練] 1.(1)化簡(jiǎn); (2)已知向量為a,b,未知向量為x,y,向量a,b,x,y滿足關(guān)系式3x-2y=a,-4x

6、+3y=b,求向量x,y. [解] (1)原式 = = ==a-b. (2)由①3+②2得,x=3a+2b,代入①得3(3a+2b)-2y=a, 所以x=3a+2b,y=4a+3b. 用已知向量表示未知向量  (1)如圖2228,?ABCD中,E是BC的中點(diǎn),若=a,=b,則=(  ) 圖2228 A.a(chǎn)-b      B.a(chǎn)+b C.a(chǎn)+b D.a(chǎn)-b (2)如圖2229所示,D,E分別是△ABC的邊AB,AC的中點(diǎn),M,N分別是DE,BC的中點(diǎn),已知=a,=b,試用a,b分別表示,,. 圖2229 [思路探究] 先用向量加減法的幾何意義設(shè)計(jì)好總

7、體思路,然后利用平面圖形的特征和數(shù)乘向量的幾何意義表示. (1)D [(1)=+=+ =-=a-b.] (2)由三角形中位線定理,知DE綊BC,故=,即=a. =++=-a+b+a=-a+b. =++=++=-a-b+a=a-b. 母題探究:1.本例(1)中,設(shè)AC與BD相交于點(diǎn)O,F(xiàn)是線段OD的中點(diǎn),AF的延長(zhǎng)線交DC于點(diǎn)G,試用a,b表示. [解] 因?yàn)镈G∥AB, 所以△DFG∽△BFA, 又因?yàn)镈F==BD=BD, 所以==, 所以=+=+=a+b. 2.本例(1)中,若點(diǎn)F為邊AB的中點(diǎn),設(shè)a=,b=,用a,b表示. [解] 由題意 解得 所以=-=a+

8、b. [規(guī)律方法] 用已知向量表示其他向量的兩種方法 (1)直接法. (2)方程法. 當(dāng)直接表示比較困難時(shí),可以首先利用三角形法則和平行四邊形法則建立關(guān)于所求向量和已知向量的等量關(guān)系,然后解關(guān)于所求向量的方程. 提醒:用已知向量表示未知向量的關(guān)鍵是弄清向量之間的數(shù)量關(guān)系. 向量共線問(wèn)題 [探究問(wèn)題] 1.已知m,n是不共線向量,a=3m+4n,b=6m-8n,判斷a與b是否共線? 提示:要判斷兩向量是否共線,只需看是否能找到一個(gè)實(shí)數(shù)λ,使得a=λb即可. 若a與b共線,則存在λ∈R,使a=λb,即3m+4n=λ(6m-8n). ∵m,n不共線,∴ ∵不存在λ同時(shí)

9、滿足此方程組,∴a與b不共線. 2.設(shè)兩非零向量e1和e2不共線,是否存在實(shí)數(shù)k,使ke1+e2和e1+ke2共線? 提示:設(shè)ke1+e2與e1+ke2共線, ∴存在λ使ke1+e2=λ(e1+ke2), 則(k-λ)e1=(λk-1)e2. ∵e1與e2不共線,∴只能有則k=1.  (1)已知非零向量e1,e2不共線,如果=e1+2e2,=-5e1+6e2,=7e1-2e2,則共線的三個(gè)點(diǎn)是________. (2)已知A,B,P三點(diǎn)共線,O為直線外任意一點(diǎn),若=x+y,求x+y的值. [思路探究] (1)將三點(diǎn)共線問(wèn)題轉(zhuǎn)化為向量共線問(wèn)題,例如∥可推出A,B,D三點(diǎn)共線.

10、(2)先用共線向量定理引入?yún)?shù)λ得=λ,再用向量減法的幾何意義向=x+y變形,最后對(duì)比求x+y. (1)A,B,D [(1)∵=e1+2e2,=+=-5e1+6e2+7e1-2e2=2(e1+2e2)=2. ∴,共線,且有公共點(diǎn)B, ∴A,B,D三點(diǎn)共線.] (2)由于A,B,P三點(diǎn)共線,則,在同一直線上,由共線向量定理可知,必存在實(shí)數(shù)λ使得=λ,即-=λ(-),∴=(1-λ)+λ. ∴x=1-λ,y=λ,則x+y=1. [規(guī)律方法] 1.證明或判斷三點(diǎn)共線的方法 (1)一般來(lái)說(shuō),要判定A,B,C三點(diǎn)是否共線,只需看是否存在實(shí)數(shù)λ,使得=λ(或=λ等)即可. (2)利用結(jié)論:若

11、A,B,C三點(diǎn)共線,O為直線外一點(diǎn)?存在實(shí)數(shù)x,y,使=x+y且x+y=1. 2.利用向量共線求參數(shù)的方法 判斷、證明向量共線問(wèn)題的思路是根據(jù)向量共線定理尋求唯一的實(shí)數(shù)λ,使得a=λb(b≠0).而已知向量共線求λ,常根據(jù)向量共線的條件轉(zhuǎn)化為相應(yīng)向量系數(shù)相等求解.若兩向量不共線,必有向量的系數(shù)為零,利用待定系數(shù)法建立方程,從而解方程求得λ的值. [當(dāng) 堂 達(dá) 標(biāo)固 雙 基] 1.設(shè)a,b是兩個(gè)不共線的向量.若向量ka+2b與8a+kb的方向相反,則k=(  ) A.-4   B.-8 C.4 D.8 A [因?yàn)橄蛄縦a+2b與8a+kb的方向相反,所以ka+2b=λ(8a+kb

12、)??k=-4(因?yàn)榉较蛳喾矗驭耍??k<0).] 2.(2018全國(guó)卷Ⅰ)在△ABC中,AD為BC邊上的中線,E為AD的中點(diǎn),則=(  ) A.- B.- C.+ D.+ A [由題可得=+=-(+)+=-.] 3.對(duì)于向量a,b有下列表示: ①a=2e,b=-2e; ②a=e1-e2,b=-2e1+2e2; ③a=4e1-e2,b=e1-e2; ④a=e1+e2,b=2e1-2e2. 其中,向量a,b一定共線的有(  ) A.①②③ B.②③④ C.①③④ D.①②③④ A [對(duì)于①,b=-a,有a∥b; 對(duì)于②,b=-2a,有a∥b; 對(duì)于③

13、,a=4b,有a∥b; 對(duì)于④,a與b不共線.] 4.若|a|=5,b與a方向相反,且|b|=7,則a=________b. - [由題意知a=-b.] 5.如圖2230所示,已知=,用,表示. 圖2230 [解]?。剑剑剑?-) =-+. 6EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F3756EDBC3191F2351DD815FF33D4435F375

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!