一輪創(chuàng)新思維文數(shù)人教版A版練習:第二章 第十二節(jié) 導數(shù)的綜合應(yīng)用 Word版含解析

上傳人:仙*** 文檔編號:40240993 上傳時間:2021-11-15 格式:DOC 頁數(shù):11 大小:124.50KB
收藏 版權(quán)申訴 舉報 下載
一輪創(chuàng)新思維文數(shù)人教版A版練習:第二章 第十二節(jié) 導數(shù)的綜合應(yīng)用 Word版含解析_第1頁
第1頁 / 共11頁
一輪創(chuàng)新思維文數(shù)人教版A版練習:第二章 第十二節(jié) 導數(shù)的綜合應(yīng)用 Word版含解析_第2頁
第2頁 / 共11頁
一輪創(chuàng)新思維文數(shù)人教版A版練習:第二章 第十二節(jié) 導數(shù)的綜合應(yīng)用 Word版含解析_第3頁
第3頁 / 共11頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《一輪創(chuàng)新思維文數(shù)人教版A版練習:第二章 第十二節(jié) 導數(shù)的綜合應(yīng)用 Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《一輪創(chuàng)新思維文數(shù)人教版A版練習:第二章 第十二節(jié) 導數(shù)的綜合應(yīng)用 Word版含解析(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 高考數(shù)學精品復(fù)習資料 2019.5 課時規(guī)范練 A組 基礎(chǔ)對點練 1.已知函數(shù)f(x)=x3-2x2+3m,x∈[0,+∞),若f(x)+5≥0恒成立,則實數(shù)m的取值范圍是(  ) A.       B. C.(-∞,2] D.(-∞,2) 解析:f′(x)=x2-4x,由f′(x)>0,得x>4或x<0. ∴f(x)在(0,4)上單調(diào)遞減,在(4,+∞)上單調(diào)遞增, ∴當x∈[0,+∞)時,f(x)min=f(4). ∴要使f(x)+5≥0恒成立,只需f(4)+5≥0恒成立即可,代入解之得m≥. 答案:

2、A 2.對?x∈R,函數(shù)f(x)的導數(shù)存在,若f′(x)>f(x),且a>0,則以下說法正確的是(  ) A.f(a)>eaf(0) B.f(a)f(0) D.f(a)0,故 g(x)=為R上的單調(diào)遞增函數(shù),因此g(a)>g(0),即>=f(0),所以f(a)>eaf(0),選A. 答案:A 3.若存在正數(shù)x使2x(x-a)<1成立,則a的取值范圍是(  ) A.(-∞,+∞) B.(-2,+∞) C.(0,+∞) D.(-1,+∞) 解析:∵2x(x-a)<1,∴a>x-. 令f(x)=

3、x-, ∴f′(x)=1+2-xln 2>0. ∴f(x)在(0,+∞)上單調(diào)遞增, ∴f(x)>f(0)=0-1=-1, ∴a的取值范圍為(-1,+∞),故選D. 答案:D 4.某工廠要圍建一個面積為512平方米的矩形堆料場,一邊可以利用原有的墻壁,其他三邊需要砌新的墻壁,當砌新的墻壁所用的材料最省時,堆料場的長和寬分別為(  ) A.32米,16米 B.30米,15米 C.40米,20米 D.36米,18米 解析:要求材料最省,則要求新砌的墻壁總長最短,設(shè)堆料廠的寬為x米,則長為米,因此新墻總長為L=2x+(x>0),則L′=2-,令L′=0,得x=16.又x>0,∴

4、x=16.則當x=16時,L取得極小值,也是最小值,即用料最省,此時長為=32(米).故選A. 答案:A 5.某銀行準備設(shè)一種新的定期存款業(yè)務(wù),經(jīng)預(yù)測,存款量與存款利率的平方成正比,比例系數(shù)為k(k>0),貸款的利率為4.8%,假設(shè)銀行吸收的存款能全部放貸出去.若存款利率為x(x∈(0,0.048)),則銀行獲得最大收益的存款利率為(  ) A.3.2% B.2.4% C.4% D.3.6% 解析:依題意知,存款量是kx2,銀行應(yīng)支付的利息是kx3,銀行應(yīng)獲得的利息是0.048kx2,所以銀行的收益y=0.048kx2-kx3,故y′=0.096kx-3kx2,令y′=0,得x=

5、0.032或x=0(舍去).因為k>0,所以當00;當0.032

6、當1≤x≤e時,h′(x)≥0,∴在[1,e]上,h(x)max=h(e)=,∴<,∴m<.∴m的取值范圍是.故選B. 答案:B 7.若函數(shù)f(x)=xex-a有兩個零點,則實數(shù)a的取值范圍為(  ) A.-- C.-e0,所以由g′(x)=0,解得x=-1, 當x>-1時,g′(x)>0,函數(shù)g(x)為增函數(shù);當x<-1時,g′(x)<0,函數(shù)g(x)為減函數(shù),所以當x=-1時函數(shù)g(x)有最小值;g(-1)=-e-1=-.畫出函數(shù)y=xex的圖象,如圖所示,顯

7、然當-

8、,0)時, 得a≤-2. 由以上兩種情況得-6≤a≤-2,顯然當x=0時也成立, 故實數(shù)a的取值范圍為[-6,-2]. 答案:C 9.若函數(shù)f(x)=2x+sin x對任意的m∈[-2,2],f(mx-3)+f(x)<0恒成立,則x的取值范圍是__________. 解析:f(-x)=-f(x),f(x)為奇函數(shù), 若x∈R時,f′(x)=2+cos x>0恒成立, ∴f(x)在R上為增函數(shù), 又f(x)為奇函數(shù),故 在定義域內(nèi)為增函數(shù),∴f(mx-3)+f(x)<0可變形為f(mx-3)

9、∈[-2,2],可得當m∈[-2,2]時,g(m)<0恒成立,若x≥0,g(2)<0,若x<0,g(-2)<0,解得-30, 且函數(shù)f(x)=ln x+3x-8在(0,+∞)上為增函數(shù), ∴x0∈[2,3],即a=2,b=3. ∴a+b=5. 答案:5 11.已知函數(shù)f(x)=ax+xln x(a∈R). (1)若函數(shù)f

10、(x)在區(qū)間[e,+∞)上為增函數(shù),求a的取值范圍; (2)當a=1且k∈Z時,不等式k(x-1)1恒成立. 令g(x

11、)=,則g′(x)=. 令h(x)=x-ln x-2(x>1), 則h′(x)=1-=>0, ∴h(x)在(1,+∞)上單調(diào)遞增. ∵h(3)=1-ln 3<0,h(4)=2-2ln 2>0, ∴存在x0∈(3,4)使h(x0)=0,即g′(x0)=0. 即當1x0時,h(x)>0,即g′(x)>0. ∴g(x)在(1,x0)上單調(diào)遞減,在(x0,+∞)上單調(diào)遞增. 由h(x0)=x0-ln x0-2=0,得ln x0=x0-2, g(x)min=g(x0)== =x0∈(3,4), ∴k

12、Z,即kmax=3. 12.(20xx德州中學月考)已知函數(shù)f(x)=mx2-x+ln x. (1)若在函數(shù)f(x)的定義域內(nèi)存在區(qū)間D,使得該函數(shù)在區(qū)間D上為減函數(shù),求實數(shù)m的取值范圍; (2)當00時,由于函數(shù)y=2mx2-x+1的圖象的對稱軸x=>0,故需且只需Δ>0,即1-8m>0,解得m<. 故0

13、m-1,f′(1)=2m,故切線方程為y-m+1=2m(x-1), 即y=2mx-m-1. 從而方程mx2-x+ln x=2mx-m-1在(0,+∞)上有且只有一解. 設(shè)g(x)=mx2-x+ln x-(2mx-m-1), 則g (x)在(0,+∞)上有且只有一個零點. 又g(1)=0,故函數(shù)g(x)有零點x=1. 則g′(x)=2mx-1+-2m==. 當m=時,g′(x)≥0, 又g(x)不是常數(shù)函數(shù),故g(x)在(0,+∞)上單調(diào)遞增. ∴函數(shù)g(x)有且只有一個零點x=1,滿足題意. 當01, 由g′(x)>0,得0

14、; 由g′(x)<0,得10, 故在上,函數(shù)g(x)又有一個零點,不滿足題意. 綜上所述,m=. B組 能力提升練 1.若不等式2xln x≥-x2+ax-3對x∈(0,+∞)恒成立,則實數(shù)a的取值范圍是(  ) A.(-∞,0) B.(-∞,4] C.(0,+∞) D.[4,+∞

15、) 解析:2xln x≥-x2+ax-3, 則a≤2ln x+x+,設(shè)h(x)=2ln x+x+(x>0),則h′(x)=. 當x∈(0,1)時,h′(x)<0,函數(shù)h(x)單調(diào)遞減; 當x∈(1,+∞)時,h′(x)>0,函數(shù)h(x)單調(diào)遞增,所以h(x)min=h(1)=4,所以a≤h(x)min=4. 答案:B 2.(20xx運城模擬)已知函數(shù)f(x)=ln x+tan α的導函數(shù)為f′(x),若方程f′(x)=f(x)的根x0小于1,則α的取值范圍為(  ) A. B. C. D. 解析:因為f(x)=ln x+tan α,所以f′(x)=, 令f(x)=f′(

16、x),得ln x+tan α=, 即tan α=-ln x.設(shè)g(x)=-ln x,顯然g(x)在(0,+∞)上單調(diào)遞減, 而當x→0時,g(x)→+∞, 所以要使?jié)M足f′(x)=f(x)的根x0<1,只需tan α>g(1)=1, 又因為0<α<,所以α∈. 答案:A 3.(20xx宜州調(diào)研)設(shè)f(x)=|ln x|,若函數(shù)g(x)=f(x)-ax在區(qū)間(0,4)上有三個零點,則實數(shù)a的取值范圍是(  ) A. B. C. D. 解析:令y1=f(x)=|ln x|,y2=ax,若函數(shù)g(x)=f(x)-ax在區(qū)間(0,4)上有三個零點,則y1=f(x)=|ln x|與

17、y2=ax的圖象(圖略)在區(qū)間(0,4)上有三個交點.由圖象易知,當a≤0時,不符合題意;當a>0時,易知y1=|ln x|與y2=ax 的圖象在區(qū)間(0,1)上有一個交點,所以只需要y1=|ln x|與y2=ax的圖象在區(qū)間(1,4)上有兩個交點即可,此時|ln x|=ln x,由ln x=ax,得a=.令h(x)=,x∈(1,4),則h′(x)=,故函數(shù)h(x)在(1,e)上單調(diào)遞增,在(e,4)上單調(diào)遞減,h(e)==,h(1)=0,h(4)==,所以0).若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩

18、個零點,則a的取值范圍是(  ) A. B. C.(1,2) D.(0,+∞) 解析:f′(x)=x2+(1-a)x-a=(x+1)(x-a). 由f′(x)=0,得x=-1或a(a>0). 當x變化時f′(x)與f(x)的變化情況如表: x (-∞,-1) -1 (-1,a) a (a,+∞) f′(x) + 0 - 0 + f(x)  極大值  極小值  故函數(shù)f(x)的單調(diào)遞增區(qū)間是(-∞,-1),(a,+∞);單調(diào)遞減區(qū)間是(-1,a). 可知函數(shù)f(x)在區(qū)間(-2,-1)內(nèi)單調(diào)遞增;在區(qū)間(-1,0)內(nèi)單調(diào)遞減. 從而函

19、數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個零點, 當且僅當解得00)有唯一的零點x0,且m0,x>0).因為函數(shù)f(x)有唯一零點x0,所以函數(shù)g(x),h(x)的圖象有唯一一個交點,即g(x),h(x)有唯一公切點(x0,y0),即由得x+-2ln x0=0,令φ(x)=x+-2ln x0,則φ(1)

20、=3>0,φ(2)=5-7ln 2>0,φ(e)=-e2+<0,所以x0∈(2,e),所以m=2,n=3,所以m+n=5. 答案:C 6.若函數(shù)f(x)=+1(a<0)沒有零點,則實數(shù)a的取值范圍為__________. 解析:f′(x)==. 當a<0時,f′(x),f(x)的變化情況如下表: x (-∞,2) 2 (2,+∞) f′(x) - 0 + f(x)  極小值  若使函數(shù)f(x)沒有零點, 當且僅當f(2)=+1>0,解得a>-e2, 所以此時-e2

21、x)=x2+x,g(x)=x3-2x+m,若不等式f(x)≥g(x)對任意x∈[-4,4]恒成立,則實數(shù)m的取值范圍是__________. 解析:令h(x)=g(x)-f(x) =x3-x2-3x+m, 則h′(x)=(x-3)(x+1). 所以當-40; 當-10. 要使f(x)≥g(x)恒成立,即h(x)max≤0, 由上知h(x)的最大值在x=-1或x=4處取得, 而h(-1)=m+,h(4)=m-, 所以m+≤0,即m≤-, 所以實數(shù)m的取值范圍為. 答案: 8.(20xx長

22、沙模擬)已知函數(shù)f(x)=x|x2-a|,若存在x∈[1,2],使得f(x)<2,則實數(shù)a的取值范圍是__________. 解析:當x∈[1,2]時,f(x)=|x3-ax|, 由f(x)<2可得-2-5,即a<5; 設(shè)h(x)=-x2+,導數(shù)為h′(x)=-2x-, 當x∈[1,2]時,h′(x)<0, 即h(x)在[1,2]上單調(diào)遞減,可得h(

23、x)max=-1+2=1.即有-a<1,即a>-1. 綜上可得,a的取值范圍是-1

24、)=g(x)在[,e]上有兩個不等解時a的取值范圍為. 10.(20xx貴陽模擬)已知函數(shù)f(x)=1-,g(x)=x-ln x. (1)證明:g(x)≥1. (2)證明:(x-ln x)f(x)>1-. 證明:(1)g′(x)=,當01時,g′(x)>0, 即g(x)在(0,1)上為減函數(shù),在(1,+∞)上為增函數(shù). 所以g(x)≥g(1)=1,得證. (2)f(x)=1-,f′(x)=, 所以當02時,f′(x)>0, 即f(x)在(0,2)上為減函數(shù),在(2,+∞)上為增函數(shù), 所以f(x)≥f(2)=1-,① 又由(1)知x-ln x≥1,②,且①②等號不同時取得. 所以(x-ln x)f(x)>1-.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!