高考數(shù)學(xué)復(fù)習(xí):第九章 :第三節(jié)導(dǎo)數(shù)的應(yīng)用二突破熱點(diǎn)題型
《高考數(shù)學(xué)復(fù)習(xí):第九章 :第三節(jié)導(dǎo)數(shù)的應(yīng)用二突破熱點(diǎn)題型》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《高考數(shù)學(xué)復(fù)習(xí):第九章 :第三節(jié)導(dǎo)數(shù)的應(yīng)用二突破熱點(diǎn)題型(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、△+△2019年數(shù)學(xué)高考教學(xué)資料△+△ 第三節(jié) 導(dǎo)數(shù)的應(yīng)用(二) 考點(diǎn)一 利用導(dǎo)數(shù)解決生活中的優(yōu)化問(wèn)題 [例1] (2013重慶高考)某村莊擬修建一個(gè)無(wú)蓋的圓柱形蓄水池(不計(jì)厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12 000π元(π為圓周率). (1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域; (2)討論函數(shù)V(r)的單調(diào)性,并確定r和h為何值時(shí)該蓄水池的體積最大.[來(lái)源:] [自主解答] (1)因?yàn)樾钏貍?cè)
2、面的總成本為1002πrh=200πrh元,底面的總成本為160πr2元,所以蓄水池的總成本為(200πrh+160πr2)元.又根據(jù)題意得200πrh+160πr2=
12 000π,所以h=(300-4r2),從而V(r)=πr2h=(300r-4r3).由h>0,且r>0可得0
3、)<0,故V(r)在(5,5)上為減函數(shù).由此可知,V(r)在r=5處取得最大值,此時(shí)h=8,即當(dāng)r=5,h=8時(shí),該蓄水池的體積最大. 【方法規(guī)律】 利用導(dǎo)數(shù)解決生活中優(yōu)化問(wèn)題的方法 求實(shí)際問(wèn)題中的最大值或最小值時(shí),一般是先設(shè)自變量、因變量,建立函數(shù)關(guān)系式,并確定其定義域,然后利用求函數(shù)最值的方法求解,注意結(jié)果應(yīng)與實(shí)際情況相結(jié)合. 某工廠(chǎng)每天生產(chǎn)某種產(chǎn)品最多不超過(guò)40件,產(chǎn)品的正品率P與日產(chǎn)量x(x∈N*)件之間的關(guān)系為P=,每生產(chǎn)一件正品盈利4 000元,每出現(xiàn)一件次品虧損2 000元.(注:正品率=產(chǎn)品中的正品件數(shù)產(chǎn)品總件數(shù)100%) (1)將日利潤(rùn)y(元)表示成日產(chǎn)量
4、x(件)的函數(shù);
(2)該廠(chǎng)的日產(chǎn)量為多少件時(shí),日利潤(rùn)最大?并求出日利潤(rùn)的最大值.
解:(1)∵y=4 000x-2 000x=3 600x-x3,
∴所求的函數(shù)關(guān)系式是y=-x3+3 600x(x∈N*,1≤x≤40).
(2)由(1)知y′=3 600-4x2.令y′=0,解得x=30.∴當(dāng)1≤x<30時(shí),y′>0;當(dāng)30 5、2 000(元).∴該廠(chǎng)的日產(chǎn)量為30件時(shí),日利潤(rùn)最大,最大值為72 000元.
考點(diǎn)二
利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)或方程的根
[例2] 已知函數(shù)f(x)=(ax2+x-1)ex,其中e是自然對(duì)數(shù)的底數(shù),a∈R.
(1)若a=1,求曲線(xiàn)f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程;
(2)若a<0,求f(x)的單調(diào)區(qū)間;
(3)若a=-1,函數(shù)f(x)的圖象與函數(shù)g(x)=x3+x2+m的圖象有3個(gè)不同的交點(diǎn),求實(shí)數(shù)m的取值范圍.
[自主解答] (1)a=1時(shí),f(x)=(x2+x-1)ex,
所以f′(x)=(2x+1)ex+(x2+x-1)ex=(x2+3x)ex,
6、所以曲線(xiàn)f(x)在點(diǎn)(1,f(1))處的切線(xiàn)斜率為k=f′(1)=4e.又因?yàn)閒(1)=e,
所以所求切線(xiàn)方程為y-e=4e(x-1),
即4ex-y-3e=0.
(2)f′(x)=(2ax+1)ex+(ax2+x-1)ex=[ax2+(2a+1)x]ex,
①若--時(shí),f′(x)<0;
當(dāng)0 7、.
所以f(x)的單調(diào)遞減區(qū)間為,[0,+∞);
單調(diào)遞增區(qū)間為.
(3)a=-1時(shí),f(x)=(-x2+x-1)ex,
由(2)知,f(x)=(-x2+x-1)ex在(-∞,-1]上單調(diào)遞減,在[-1,0]上單調(diào)遞增,在[0,+∞)上單調(diào)遞減.
所以f(x)在x=-1處取得極小值f(-1)=-,在x=0處取得極大值f(0)=-1.
由g(x)=x3+x2+m,得g′(x)=x2+x.
當(dāng)x<-1或x>0時(shí),g′(x)>0;當(dāng)-1 8、得極大值g(-1)=+m,在x=0處取得極小值g(0)=m.
因?yàn)楹瘮?shù)f(x)與函數(shù)g(x)的圖象有3個(gè)不同的交點(diǎn),
所以即
所以-- 9、可以通過(guò)導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最大值、最小值、變化趨勢(shì)等,根據(jù)題目要求,畫(huà)出函數(shù)圖象的走勢(shì)規(guī)律,標(biāo)明函數(shù)極(最)值的位置,通過(guò)數(shù)形結(jié)合的思想去分析問(wèn)題,可以使問(wèn)題的求解有一個(gè)清晰、直觀(guān)的整體展現(xiàn).
已知函數(shù)f(x)=ax(a∈R),g(x)=ln x-1.
(1)若函數(shù)h(x)=g(x)+1-f(x)-2x存在單調(diào)遞減區(qū)間,求a的取值范圍;
(2)當(dāng)a>0時(shí),試討論這兩個(gè)函數(shù)圖象的交點(diǎn)個(gè)數(shù).
解:(1)h(x)=ln x-x2-2x(x>0),則h′(x)=-ax-2.若使h(x)存在單調(diào)遞減區(qū)間,則h′(x)=-ax-2<0在(0,+∞)上有解.而當(dāng)x>0時(shí),h′(x)=-a 10、x-2<0?ax>-2?a>-,問(wèn)題轉(zhuǎn)化為a>-在(0,+∞)上有解,故a大于函數(shù)t=-在(0,+∞)上的最小值.
又t=-=2-1,故t在(0,+∞)上的最小值為-1,所以a>-1,故a的取值范圍為(-1,+∞).
(2)令F(x)=f(x)-g(x)=ax-ln x+1(a>0,x>0).
函數(shù)f(x)=ax與g(x)=ln x-1的圖象的交點(diǎn)個(gè)數(shù)即為函數(shù)F(x)的零點(diǎn)個(gè)數(shù).F′(x)=a-(x>0).令F′(x)=a-=0,解得x=.隨著x的變化,F(xiàn)′(x),F(xiàn)(x)的變化情況如下表:
x
F′(x)
-
0
+
F(x)
↘
極(最)小值
↗
① 11、當(dāng)F=2+ln a>0,即a>e-2時(shí),F(xiàn)(x)恒大于0;
②當(dāng)F=2+ln a=0,即a=e-2時(shí),函數(shù)F(x)有且僅有一個(gè)零點(diǎn);
③當(dāng)F=2+ln a<0,即01.又F(1)=a+1>0,所以F(1)F<0.又F(x)在內(nèi)單調(diào)遞減,所以F(x)在內(nèi)有且僅有一個(gè)零點(diǎn);
當(dāng)x>時(shí),F(xiàn)(x)=ln +1.由指數(shù)函數(shù)y=(ea)x(ea>1)與冪函數(shù)y=x增長(zhǎng)速度的快慢知,存在x0>,使得>1.從而F(x0)=ln+1>ln 1+1=1>0.因而F(x0)F<0.又F(x)在內(nèi)單調(diào)遞增,F(xiàn)(x)在上的圖象是連續(xù)不斷的曲線(xiàn),所以F(x)在內(nèi)有且僅有一個(gè)零點(diǎn).因此,當(dāng)0
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)管理制度:常見(jiàn)突發(fā)緊急事件應(yīng)急處置程序和方法
- 某物業(yè)公司冬季除雪工作應(yīng)急預(yù)案范文
- 物業(yè)管理制度:小區(qū)日常巡查工作規(guī)程
- 物業(yè)管理制度:設(shè)備設(shè)施故障應(yīng)急預(yù)案
- 某物業(yè)公司小區(qū)地下停車(chē)場(chǎng)管理制度
- 某物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 物業(yè)管理制度:安全防范十大應(yīng)急處理預(yù)案
- 物業(yè)公司巡查、檢查工作內(nèi)容、方法和要求
- 某物業(yè)公司保潔部門(mén)領(lǐng)班總結(jié)
- 某公司安全生產(chǎn)舉報(bào)獎(jiǎng)勵(lì)制度
- 物業(yè)管理:火情火災(zāi)應(yīng)急預(yù)案
- 某物業(yè)安保崗位職責(zé)
- 物業(yè)管理制度:節(jié)前工作重點(diǎn)總結(jié)
- 物業(yè)管理:某小區(qū)消防演習(xí)方案
- 某物業(yè)公司客服部工作職責(zé)