人教版 高中數學 選修23 練習第二章章末復習課

上傳人:仙*** 文檔編號:41960608 上傳時間:2021-11-24 格式:DOC 頁數:13 大?。?71.50KB
收藏 版權申訴 舉報 下載
人教版 高中數學 選修23 練習第二章章末復習課_第1頁
第1頁 / 共13頁
人教版 高中數學 選修23 練習第二章章末復習課_第2頁
第2頁 / 共13頁
人教版 高中數學 選修23 練習第二章章末復習課_第3頁
第3頁 / 共13頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《人教版 高中數學 選修23 練習第二章章末復習課》由會員分享,可在線閱讀,更多相關《人教版 高中數學 選修23 練習第二章章末復習課(13頁珍藏版)》請在裝配圖網上搜索。

1、人教版高中數學精品資料章末復習課整合整合網絡構建網絡構建警示警示易錯提醒易錯提醒1“互斥事件互斥事件”與與“相互獨立事件相互獨立事件”的區(qū)別的區(qū)別“互斥事件互斥事件”是說兩個事件不能同時發(fā)生是說兩個事件不能同時發(fā)生, “相互獨立事件相互獨立事件”是說是說一個事件發(fā)生與否對另一個事件發(fā)生的概率沒有影響一個事件發(fā)生與否對另一個事件發(fā)生的概率沒有影響2對獨立重復試驗要準確理解對獨立重復試驗要準確理解(1)獨立重復試驗的條件:第一獨立重復試驗的條件:第一,每次試驗是在同樣條件下進行;每次試驗是在同樣條件下進行;第二第二,任何一次試驗任何一次試驗中某事件發(fā)生的概率相等;第三,每次試驗都只中某事件發(fā)生的概

2、率相等;第三,每次試驗都只有兩種結果,即事件要么發(fā)生,要么不發(fā)生有兩種結果,即事件要么發(fā)生,要么不發(fā)生(2)獨立重復試驗概率公式的特點:關于獨立重復試驗概率公式的特點:關于 P(Xk)Cknpk(1p)nk,它是它是 n 次獨立重復試驗中某事件次獨立重復試驗中某事件 A 恰好發(fā)生恰好發(fā)生 k 次的概率次的概率其中其中 n 是重是重復試驗次數復試驗次數, p 是一次試驗中某事件是一次試驗中某事件 A 發(fā)生的概率發(fā)生的概率, k 是在是在 n 次獨立試次獨立試驗中事件驗中事件 A 恰好發(fā)生的次數恰好發(fā)生的次數,弄清公式中弄清公式中 n,p,k 的意義的意義,才能正確才能正確運用公式運用公式3(1)

3、準確理解事件和隨機變量取值的意義準確理解事件和隨機變量取值的意義,對實際問題中事件之對實際問題中事件之間的關系要清楚間的關系要清楚(2)認真審題認真審題,找找準關鍵字句,提高解題能力準關鍵字句,提高解題能力如如“至少有一個發(fā)至少有一個發(fā)生生”“”“至多有一個發(fā)生至多有一個發(fā)生”“”“恰有一個發(fā)生恰有一個發(fā)生”等等(3)常見事件的表示常見事件的表示已知兩個事件已知兩個事件 A、B,則則 A,B 中至少有一個中至少有一個發(fā)生為發(fā)生為 AB;都發(fā)生為;都發(fā)生為 AB;都不發(fā)生為;都不發(fā)生為AB;恰有一個發(fā)生為;恰有一個發(fā)生為(AB)(AB);至多有一個發(fā)生為;至多有一個發(fā)生為(AB)(AB)(AB)

4、4對于條件概率對于條件概率,一定要區(qū)分一定要區(qū)分 P(AB)與與 P(B|A)5(1)離散型隨機變量的期望與方差若存在則必唯一,期望離散型隨機變量的期望與方差若存在則必唯一,期望 E()的值可正也可負的值可正也可負,而方差的值則一定是一個非負值而方差的值則一定是一個非負值它們都由它們都由的分布的分布列唯一確定列唯一確定(2)D()表示隨機變量表示隨機變量對對 E()的平均偏離程度的平均偏離程度D() 越大表明平越大表明平均偏離程度越大均偏離程度越大,說明說明的取值越分散的取值越分散;反之反之 D()越小越小,的取值越集的取值越集中中(3)D(ab)a2D(),在記憶和使用此結論時在記憶和使用此

5、結論時,請注意請注意 D(ab)aD()b,D(ab)aD()6對于正態(tài)分布對于正態(tài)分布,要特別注意要特別注意 N(,2)由由和和唯一確定唯一確定,解決解決正正態(tài)分布問題要牢記其概率密度曲線的對稱軸為態(tài)分布問題要牢記其概率密度曲線的對稱軸為 x.專題一專題一條件概率的求法條件概率的求法條件概率是高考的一個熱點條件概率是高考的一個熱點,常以選擇題或填空題的形式出現常以選擇題或填空題的形式出現,也可能是大題中的一個部分也可能是大題中的一個部分,難度中等難度中等例例 1壇子里放著壇子里放著 7 個大小個大小、形狀相同的鴨蛋形狀相同的鴨蛋,其中有其中有 4 個是綠個是綠皮的皮的,3 個是白皮的如果不放

6、回地依次拿出個是白皮的如果不放回地依次拿出 2 個鴨蛋個鴨蛋,求:求:(1)第第 1 次拿出綠皮鴨蛋的概率;次拿出綠皮鴨蛋的概率;(2)第第 1 次和第次和第 2 次都拿出綠皮鴨蛋的概率;次都拿出綠皮鴨蛋的概率;(3)在第在第 1 次拿出綠皮鴨蛋的條件下次拿出綠皮鴨蛋的條件下, 第第 2 次拿出綠皮鴨蛋的概率次拿出綠皮鴨蛋的概率解解: 設設“第第 1 次拿出綠皮鴨蛋次拿出綠皮鴨蛋”為事為事件件 A,“第第 2 次拿出綠皮鴨蛋次拿出綠皮鴨蛋”為事件為事件 B,則則“第第 1 次和第次和第 2 次都拿出綠皮鴨蛋次都拿出綠皮鴨蛋”為事件為事件 AB.(1)從從 7 個鴨蛋中不放回地依次拿出個鴨蛋中不

7、放回地依次拿出 2 個的事件數為個的事件數為 n()A2742,根據分步乘法計數原理根據分步乘法計數原理,n(A)A14A1624.于是于是 P(A)n(A)n()244247.(2)因為因為 n(AB)A2412,所以所以 P(AB)n(AB)n()124227.(3)法一法一由由(1)(2)可得可得,在第在第 1 次拿出綠皮鴨蛋的條件下次拿出綠皮鴨蛋的條件下,第第 2 次次拿出綠皮鴨蛋的概率為拿出綠皮鴨蛋的概率為 P(B|A)P(AB)P(A)274712.法二法二因為因為 n(AB)12,n(A)24,所以所以 P(B|A)n(AB)n(A)122412.歸納升華歸納升華解決概率問題的步

8、驟解決概率問題的步驟第一步第一步,確定事件的性質:古典概型、互斥事件、獨立事件、獨確定事件的性質:古典概型、互斥事件、獨立事件、獨立重復試驗、條件概率立重復試驗、條件概率,然后把所給問題歸結為某一種,然后把所給問題歸結為某一種第二步第二步,判斷事件的運算判斷事件的運算(和事件和事件、積事件積事件),確定事件至少有一個確定事件至少有一個發(fā)生還是同時發(fā)生發(fā)生還是同時發(fā)生,分別運用相加或相乘事件公式分別運用相加或相乘事件公式第三步第三步,利用條件概率公式求解:利用條件概率公式求解:(1)條件概率定義:條件概率定義:P(B|A)P(AB)P(A).(2)針對古典概型針對古典概型,縮減基本事件總數縮減基

9、本事件總數 P(B|A)n(AB)n(A).變式訓練變式訓練把一枚骰子連續(xù)擲兩次把一枚骰子連續(xù)擲兩次,已知在第一次拋出的是偶數已知在第一次拋出的是偶數點的情況點的情況下,第二次拋出的也是偶數點的概率為是多少?下,第二次拋出的也是偶數點的概率為是多少?解解:“第一次拋出偶數點第一次拋出偶數點”記為事件記為事件 A, “第二次拋出偶數點第二次拋出偶數點”記記為事件為事件 B,則則 P(A)366612,P(AB)336614.所以所以 P(B|A)P(AB)P(A)141212.專題二專題二互斥互斥事件、獨立事件的概率事件、獨立事件的概率要正確區(qū)分互斥事件與相互獨立事件要正確區(qū)分互斥事件與相互獨立

10、事件,準確應用相關公式解題準確應用相關公式解題,互斥事件是不可能同時發(fā)生的事件互斥事件是不可能同時發(fā)生的事件,相互獨立事件是指一個事件的發(fā)相互獨立事件是指一個事件的發(fā)生與否對另一個事件沒有影響生與否對另一個事件沒有影響例例 2如圖所示如圖所示,由由 M 到到 N 的電路中有的電路中有 4 個元件個元件,分別標為分別標為 T1,T2,T3,T4,電流能通過電流能通過 T1,T2,T3的概率都是的概率都是 p,電流能通過電流能通過 T4的的概率是概率是 0.9,電流能否通過各元件相互獨立電流能否通過各元件相互獨立已知已知 T1,T2,T3中至少有中至少有一個一個能通過電流的概率為能通過電流的概率為

11、 0.999.(1)求求 p;(2)求電流能在求電流能在 M 與與 N 之間通過的概率之間通過的概率解:解:記記 Ai表示事件:電流能通過表示事件:電流能通過 Ti,i1,2,3,4,A 表示事件:表示事件:T1,T2,T3中至少有一個能通過電流中至少有一個能通過電流,B 表示事件:電流能在表示事件:電流能在 M 與與 N 之間通過之間通過(1),A1,A2,A3相互獨立相互獨立,P(A)P(1p)3.又又 P(A)1P(A)10.9990.001,P(A3)0.90.10.90.90.10.10.90.90.989 1.歸納升華歸納升華求解相互獨立事件同時發(fā)生的概率時求解相互獨立事件同時發(fā)生

12、的概率時,要注意以下幾個問題:要注意以下幾個問題:(1)若事件若事件 A 與與 B 相互獨立相互獨立,則事件則事件A與與 B,A 與與B,A與與B分分別相互獨立別相互獨立, 且有且有 P(AB)P(A)P(B), P(AB)P(A)P(B), P(AB)P(A)P(B)(2)若事件若事件 A1,A2,An相互獨立相互獨立,則有則有 P(A1A2A3An)P(A1)P(A2)P(An)變式訓練變式訓練一個電路如圖所示一個電路如圖所示,A,B,C,D,E,F 為為 6 個開關個開關,其閉合的概率都是其閉合的概率都是12,且是相互獨立的且是相互獨立的,則燈亮的概率是多少?則燈亮的概率是多少?解解:由

13、題意知由題意知,四條線路是否閉合相互獨立四條線路是否閉合相互獨立,開關開關 A,B 與與 E,F閉合的概率相等閉合的概率相等,都是都是 P(AB)P(A)P(B)121214,所以四條線路都所以四條線路都不閉合的概率為不閉合的概率為 P111421122964,所以燈亮的概率為所以燈亮的概率為 P19645564.專題三專題三獨立重復試驗與二項分布獨立重復試驗與二項分布二項分布是高考考查的重點二項分布是高考考查的重點,要準確理解、熟練運用其概率公要準確理解、熟練運用其概率公式式Pn(k)Cknpk(1p)nk,k0,1,2,n,高考以解答題為主高考以解答題為主,有有時也用選擇題、填空題形式考查

14、時也用選擇題、填空題形式考查例例 3現有現有 10 道題道題,其中其中 6 道甲類題道甲類題,4 道乙類題道乙類題,張同學從中張同學從中任取任取 3 道題解答道題解答(1)求張同學所取的求張同學所取的 3 道題至少有道題至少有 1 道乙類題的概率;道乙類題的概率;(2)已知所取的已知所取的 3 道題中有道題中有 2 道甲類題道甲類題,1 道乙類題設張同學答道乙類題設張同學答對每道甲類題的概率都是對每道甲類題的概率都是35,答對每道乙類題的概率都是答對每道乙類題的概率都是45,且各題答且各題答對與否相互獨立對與否相互獨立用用 X 表示張同學答對題的個數表示張同學答對題的個數,求求 X 為為 1

15、和和 3 的概的概率率解:解:(1)設事件設事件 A“ 張同學所取的張同學所取的 3 道題至少有道題至少有 1 道乙類題道乙類題”,則有則有 A“張同學所取的張同學所取的 3 道題都是甲類題道題都是甲類題”因因為為 P(A)C36C31016,所以所以 P(A)1P(A)56.(2)P(X1)C1235125115C023502524528125;P(X3)C223522504536125.歸納升華歸納升華解決二項分布問題必須注意:解決二項分布問題必須注意:(1)對于公式對于公式 Pn(k)Cknpk(1p)nk,k0,1,2,n 必須在必須在滿足滿足“獨立重復試驗獨立重復試驗”時才能運用時才

16、能運用,否否則不能應用該公式則不能應用該公式(2)判斷一個隨機變量是否服從二項分布判斷一個隨機變量是否服從二項分布,關鍵有兩點:一是對立關鍵有兩點:一是對立性性,即一次試驗中即一次試驗中,事件發(fā)生與否兩者必有其一;二是重復性事件發(fā)生與否兩者必有其一;二是重復性,即試即試驗獨立重復地進行了驗獨立重復地進行了 n 次次變式訓練變式訓練一位病人服用某種新藥后被治愈的概率為一位病人服用某種新藥后被治愈的概率為 0.9,服用服用這種新藥的有甲、乙、丙這種新藥的有甲、乙、丙 3 位病人位病人,且各人之間互不影響且各人之間互不影響,有下列結有下列結論:論:3 位病人都被治愈的概率為位病人都被治愈的概率為 0

17、.93;3 人中的甲被治愈的概率為人中的甲被治愈的概率為 0.9;3 人中恰好有人中恰好有 2 人被治愈的概率是人被治愈的概率是 20.920.1;3 人中恰好有人中恰好有 2 人人未被治愈的概率是未被治愈的概率是 30.90.12.其中正確結論的序號是其中正確結論的序號是_(把正確結論的序號都填上把正確結論的序號都填上)解析解析: 中事件為中事件為 3 次獨立重復試驗恰有次獨立重復試驗恰有 3 次發(fā)生的概率次發(fā)生的概率,其概其概率為率為 0.93,故故正確;由獨立重復試驗中正確;由獨立重復試驗中,事件事件 A 發(fā)生的概率相同發(fā)生的概率相同,知知正確;正確;中恰有中恰有 2 人被治愈的概率為人

18、被治愈的概率為 P(X2)C23p2(1p)30.920.1,從而從而錯誤;錯誤;中恰好有中恰好有 2 人未被治愈相當于恰好人未被治愈相當于恰好 1 人被人被治愈治愈,故概率為故概率為 C130.90.1230.90.12,從而從而正確正確答案:答案:專題四專題四離散型隨機變量的期望與方差離散型隨機變量的期望與方差離散型隨機變量的均值和方差在實際問題中具有重要意義離散型隨機變量的均值和方差在實際問題中具有重要意義,也是也是高考的熱點內容高考的熱點內容例例 4一批產品需要進行質量檢驗一批產品需要進行質量檢驗,檢驗方案是:先從這批產品檢驗方案是:先從這批產品中任取中任取 4 件做檢驗件做檢驗,這這

19、 4 件產品中優(yōu)質品的件數記為件產品中優(yōu)質品的件數記為 n.如果如果 n3,再再從這批產品中任取從這批產品中任取 4 件檢驗件檢驗,若都為優(yōu)質品若都為優(yōu)質品,則則這批產品通過檢驗;這批產品通過檢驗;如果如果 n4,再從這批產品中任取再從這批產品中任取 1 件做檢驗件做檢驗,若為優(yōu)質品若為優(yōu)質品,則這批產則這批產品通過檢驗;其他情況下品通過檢驗;其他情況下,這批產品都不能通過檢驗假設這批產品這批產品都不能通過檢驗假設這批產品的優(yōu)質品率為的優(yōu)質品率為 50%, 即取出的每件產品是優(yōu)質品的概率都為即取出的每件產品是優(yōu)質品的概率都為12, 且各件且各件產品是否為優(yōu)質品相互獨立產品是否為優(yōu)質品相互獨立(

20、1)求這批產品通過檢驗的概率;求這批產品通過檢驗的概率;(2)已知每件產品的檢驗費用為已知每件產品的檢驗費用為 100 元元,且抽取的每件產品都需要且抽取的每件產品都需要檢驗檢驗,對這批產品作質量檢驗所需的費用記為對這批產品作質量檢驗所需的費用記為 X(單位單位:元元),求求 X 的分的分布列及數學期望布列及數學期望解解:(1)設第一次取出的設第一次取出的 4 件產品中恰件產品中恰有有 3 件優(yōu)質品為事件件優(yōu)質品為事件 A1,第第一次取出的一次取出的 4 件產品全是優(yōu)質品為事件件產品全是優(yōu)質品為事件 A2,第二次取出的第二次取出的 4 件產品都件產品都是優(yōu)質品為事件是優(yōu)質品為事件 B1,第二次

21、取出的第二次取出的 1 件產品是優(yōu)質品為事件件產品是優(yōu)質品為事件 B2,這批這批產品通過檢驗為事件產品通過檢驗為事件 A, 依題意有依題意有 A(A1B1)(A2B2), 且且 A1B1與與 A2B2互斥互斥,所以所以 P(A)P(A1B1)P(A2B2)P(A1)P(B1|A1)P(A2)P(B2|A2)41611611612364.(2)X 可能的取值為可能的取值為 400, 500, 800, 并且并且 P(X400)14161161116,P(X500)116,P(X800)14.所以所以 X 的分布列為:的分布列為:X400500800P111611614E(X)4001116500

22、11680014506.25.歸納升華歸納升華(1)求離散型隨機變量的分布列有以下三個步驟:求離散型隨機變量的分布列有以下三個步驟:明確隨機變明確隨機變量量X 取哪些值;取哪些值;計算隨機變量計算隨機變量 X 取每一取每一個值時的概率;個值時的概率;將結果用表將結果用表格形式列出格形式列出計算概率時要注意結合排列組合知識計算概率時要注意結合排列組合知識(2)均值和方差的求解方法是:在分布列的基礎上利用均值和方差的求解方法是:在分布列的基礎上利用E(X)x1p1x2p2xipixnpn求出均值求出均值,然后利用然后利用 D(X)錯誤錯誤!xiE(X)2pi求出方差求出方差變式訓練變式訓練甲甲、乙

23、兩名射手在一次乙兩名射手在一次射擊中得分為兩個相互獨立的射擊中得分為兩個相互獨立的隨機變量隨機變量,已知甲、乙兩名射手在每次射擊中射中的環(huán)數大于,已知甲、乙兩名射手在每次射擊中射中的環(huán)數大于 6環(huán)環(huán),且甲射中且甲射中 10,9,8,7 環(huán)的概率分別為環(huán)的概率分別為 0.5,3a,a,0.1,乙射乙射中中10,9,8 環(huán)的概率分別為環(huán)的概率分別為 0.3,0.3,0.2.(1)求求,的分布列;的分布列;(2)求求,的數學期望與方差的數學期望與方差,并以此比較甲、乙的射擊技術并以此比較甲、乙的射擊技術解:解:(1)由題意得:由題意得:0.53aa0.11,解得解得 a0.1.因為乙射中因為乙射中

24、10,9,8 環(huán)的概率分別為環(huán)的概率分別為 0.3,0.3,0.2,所以乙射所以乙射中中7 環(huán)的概率為環(huán)的概率為 1(0.30.30.2)0.2.所以所以,的分布列分別為:的分布列分別為:10987P0.50.30.10.110987P0.30.30.20.2(2)由由(1)得:得:E()100.590.380.170.19.2;E()100.390.380.270.28.7;D()(109.2)20.5(99.2)20.3(89.2)20.1(79.2)20.10.96;D()(108.7)20.3(98.7)20.3(88.7)20.2(78.7)20.21.21.由于由于 E()E(),

25、D()D(),說明甲射擊的環(huán)數的均值比乙高說明甲射擊的環(huán)數的均值比乙高,且成績比較穩(wěn)定且成績比較穩(wěn)定,所以甲比乙的射擊技術好所以甲比乙的射擊技術好.專題五專題五正態(tài)分布及簡單應用正態(tài)分布及簡單應用高考主要以選擇題高考主要以選擇題、 填空題形式考查正態(tài)曲線的形狀特征與性質填空題形式考查正態(tài)曲線的形狀特征與性質,抓住其對稱軸是關鍵抓住其對稱軸是關鍵例例 5為了解一種植物的生長情況為了解一種植物的生長情況,抽取一批該植物樣本測量高抽取一批該植物樣本測量高度度(單位:單位:cm),其頻率分布直方圖如圖所示其頻率分布直方圖如圖所示.(1)求該植物樣本高度的平均求該植物樣本高度的平均數數x和樣本方和樣本方

26、差差s2(同一組中的數據用同一組中的數據用該組區(qū)間的中點值作代表該組區(qū)間的中點值作代表);(2)假設該植物的高度假設該植物的高度 Z 服從正態(tài)分布服從正態(tài)分布 N(,2),其其中中近似為樣近似為樣本平均數本平均數 x, 2近似為樣本方差近似為樣本方差 s2, 利用該正態(tài)分布求利用該正態(tài)分布求 P(64.5Z96)(附附: 11010.5.若若 ZN(,2),則則 P(Z)0.682 6,P(2Z2)0.954 4)解解:(1)x550.1650.2750.35850.3950.0575,s2(5575)20.1(6575)20.2(7575)20.35(8575)20.3(9575)20.05

27、110.(2)由由(1)知知,ZN(75,110),從而從而 P(64.5Z75)12P(7510.5Z7510.5)120.682 60.341 3,P(75Z96)12P(75210.5Z75210.5)120.954 40.477 2,所所以以P(64.5Z96)P(64.5Z75)P(75Z96)0.341 30.477 20.818 5.歸納升華歸納升華求解正態(tài)分布的問題求解正態(tài)分布的問題,要根據正態(tài)曲線的對稱性要根據正態(tài)曲線的對稱性,還要結合還要結合 3原原則以及正態(tài)曲線與則以及正態(tài)曲線與 x 軸之間的面積為軸之間的面積為 1.變式訓練變式訓練某鎮(zhèn)農民年收入服從某鎮(zhèn)農民年收入服從5

28、 000 元元,200 元的正態(tài)元的正態(tài)分布則該鎮(zhèn)農民平均收入在分布則該鎮(zhèn)農民平均收入在 5 0005 200 元的人數的百分比是元的人數的百分比是_解析:解析:設設 X 表示此鎮(zhèn)農民的平均收入表示此鎮(zhèn)農民的平均收入,則則 XN(5 000,2002)由由 P(5 000200X5 000200)0.682 6.得得 P(5 000X5 200)0.682 620.341 3.故此鎮(zhèn)農民平均收入在故此鎮(zhèn)農民平均收入在 5 0005 200 元的人數的百分比元的人數的百分比為為34.13%.答案:答案:34.13%專題六專題六方程思想方程思想方程思想是解決概率問題中的重要思想方程思想是解決概率問

29、題中的重要思想,在求離散型隨機變量的在求離散型隨機變量的分布列分布列,求兩個或三個事件的概率時常會用到方程思想即根據題設求兩個或三個事件的概率時常會用到方程思想即根據題設條件列出相關未知數的方程條件列出相關未知數的方程(或方程組或方程組)求得結果求得結果例例 6甲、乙、丙三臺機床各自獨立地加工同一種零件甲、乙、丙三臺機床各自獨立地加工同一種零件,已知甲已知甲機床加工的零件是一等品而乙機床加工的零件不是一等品的概率為機床加工的零件是一等品而乙機床加工的零件不是一等品的概率為14,乙機床加工的零件是一等品而丙機床加工的零件不是一等品的概率為乙機床加工的零件是一等品而丙機床加工的零件不是一等品的概率

30、為112,甲、丙兩臺機床加工的零件都是一等品的概率為甲、丙兩臺機床加工的零件都是一等品的概率為29.(1)分別求甲、乙、丙三臺機床各自加工的零件是一等品的概率;分別求甲、乙、丙三臺機床各自加工的零件是一等品的概率;(2)從甲、乙、丙加工的零件中各取一個檢驗從甲、乙、丙加工的零件中各取一個檢驗,求至少有一個一等求至少有一個一等品的概率品的概率解解:記記 A,B,C 分別為甲分別為甲、乙乙、丙三臺機床各自加工的零件是一丙三臺機床各自加工的零件是一等品的事件等品的事件由題設條件有由題設條件有P(AB)14,P(BC)112,P(AC)29,即即P(A)1P(B)14,P(B)1P(C)112,P(A

31、)P(C)29.由由得得 P(B)198P(C),代入代入得得27P(C)251P(C)220.解得解得 P(C)23或或 P(C)119(舍去舍去)將將 P(C)23分別代入分別代入可得可得 P(A)13,P(B)14.故甲故甲、 乙乙、 丙三臺機床各自加工的零件是一等品的概率分別是丙三臺機床各自加工的零件是一等品的概率分別是13,14,23.(2)記記 D 為從甲為從甲、乙乙、丙加工的零件中各取一個檢驗丙加工的零件中各取一個檢驗,至少有一個至少有一個一等品的事件一等品的事件則則 P(D)1P(D)11P(A)1P(B)1P(C)123341356.故從甲、乙、丙加工的零件中各取一個檢驗故從

32、甲、乙、丙加工的零件中各取一個檢驗,至少有一個一等品至少有一個一等品的概率為的概率為56.歸納升華歸納升華(1)在求離散型隨機變量的分布列時在求離散型隨機變量的分布列時,常利用分布列的性質:常利用分布列的性質:p10,i1,2,3,n;錯誤錯誤!i1,列出方程或不等式求出未知數列出方程或不等式求出未知數(2)在求兩個或多個概率時在求兩個或多個概率時,常根據不同類型的概率公式列出方程常根據不同類型的概率公式列出方程或方程組求出未知數或方程組求出未知數變式訓練變式訓練若離散型隨機變量若離散型隨機變量的分的分布列為:布列為:01P9a2a38a求常數求常數 a 及相應的分布列及相應的分布列解:解:由離散型隨機變量的性質得由離散型隨機變量的性質得9a2a38a1,09a2a1,038a1,解得解得 a23(舍去舍去)或或 a13.所以所以,隨機變量的分布列為:隨機變量的分布列為:01P2313

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!