《新教材數(shù)學(xué)北師大版選修23教案 第二章 第五課時 條件概率 Word版含答案》由會員分享,可在線閱讀,更多相關(guān)《新教材數(shù)學(xué)北師大版選修23教案 第二章 第五課時 條件概率 Word版含答案(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、(新教材)北師大版精品數(shù)學(xué)資料
一、教學(xué)目標(biāo):1、知識與技能:通過對具體情景的分析,了解條件概率的定義。2、過程與方法:掌握一些簡單的條件概率的計算。3、情感、態(tài)度與價值觀:通過對實例的分析,會進行簡單的應(yīng)用。
二、教學(xué)重點:條件概率定義的理解。 教學(xué)難點:概率計算公式的應(yīng)用。
三、教學(xué)方法:探析歸納,講練結(jié)合
四、教學(xué)過程
(一)、復(fù)習(xí)引入:
1.隨機變量:如果隨機試驗的結(jié)果可以用一個變量來表示,那么這樣的變量叫做隨機變量隨機變量常用希臘字母ξ、η等表示
2. 離散型隨機變量: 隨機變量 只能取有限個數(shù)值 或可列無窮多個數(shù)值 則稱 為離散隨機變量,在高中階段我們只研究
2、隨機變量 取有限個數(shù)值的情形.
3. 分布列:設(shè)離散型隨機變量ξ可能取得值為
x1,x2,…,x3,…,
ξ取每一個值xi(i=1,2,…)的概率為,則稱表
ξ
x1
x2
…
xi
…
P
P1
P2
…
Pi
…
為隨機變量ξ的概率分布,簡稱ξ的分布列
4. 分布列的兩個性質(zhì):任何隨機事件發(fā)生的概率都滿足:,并且不可能事件的概率為0,必然事件的概率為1.由此你可以得出離散型隨機變量的分布列都具有下面兩個性質(zhì):
⑴Pi≥0,i=1,2,…; ⑵P1+P2+…=1.
X
1
0
P
p
q
對
3、于離散型隨機變量在某一范圍內(nèi)取值的概率等于它取這個范圍內(nèi)各個值的概率的和即
5.二點分布:如果隨機變量X的分布列為:
6.超幾何分布:在產(chǎn)品質(zhì)量的不放回抽檢中,若件產(chǎn)品中有件次品,抽檢件時所得次品數(shù)X=m,則.此時我們稱隨機變量X服從超幾何分布。
分析理解:如果令A(yù)={產(chǎn)品的長度合格},B={產(chǎn)品的重量合格},那么{產(chǎn)品的長度、重量都合格}?,F(xiàn)在,任取一件產(chǎn)品,已知它的重量合格(即B發(fā)生),則它的長度合格(即A發(fā)生)的概率為。那么此概率()與事件A及B發(fā)生的概率有什么關(guān)系呢?
由題目可知:,因此在事件B發(fā)生的前提下,事件A發(fā)生的概率為。
抽象概括:1、條件概率定義:已知事件發(fā)生條件
4、下事件發(fā)生的概率稱為事件關(guān)于事件的條件概率,記作. 當(dāng)時,有(其中,也可以記成AB)類似地當(dāng)時, A發(fā)生時B發(fā)生的條件概率為
2、條件概率
的性質(zhì):(1)非負(fù)性:對任意的Af. ;(2)規(guī)范性:P(|B)=1;(3)可列可加性:如果是兩個互斥事件,則.更一般地,對任意的一列兩兩部相容的事件(I=1,2…),有P =.
例1、盒中有球如表. 任取一球,記={取得藍(lán)球},={取得玻璃球}, 顯然這是古典概型. 包含的樣本點總數(shù)為16,包含的樣本點總數(shù)為11,故.
玻璃 木質(zhì)
總計
紅
藍(lán)
2 3
5、 4 7
5
11
總計
6 10
16
如果已知取得為玻璃球,這就是發(fā)生條件下發(fā)生的條件概率,記作. 在發(fā)生的條件下可能取得的樣本點總數(shù)應(yīng)為“玻璃球的總數(shù)”,也即把樣本空間壓縮到玻璃球全體. 而在發(fā)生條件下包含的樣本點數(shù)為藍(lán)玻璃球數(shù),故.
一般說來,在古典概型下,都可以這樣做.但若回到原來的樣本空間,則當(dāng),有
這式子對幾何概率也成立.
例2、甲乙兩市位于長江下游,根據(jù)一百多年的記錄知道,一年中雨天的比例,甲為20%,乙為18%,兩市同時下雨的天數(shù)占12%. 求:① 乙市下雨時甲市也下雨的概率;② 甲乙兩市至少一市下雨的概率。
解 分別用,記事件{甲下雨}和{乙下雨}. 按題意有,,,. ① 所求為 .
② 所求為 .
(三)、課堂小結(jié):本節(jié)課1、學(xué)習(xí)了條件概率的定義條件概率的定義;2、條件概率的性質(zhì)3、條件概率的計算方法。
(四)、課堂練習(xí):課本第45頁練習(xí)
(五)、課后作業(yè):課本第47頁習(xí)題2-3中1、2