人教初中數(shù)學(xué)人教版第14章 整式的乘法與因式分解測試卷(3)

上傳人:青**** 文檔編號(hào):42980312 上傳時(shí)間:2021-11-29 格式:DOC 頁數(shù):18 大?。?30.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
人教初中數(shù)學(xué)人教版第14章 整式的乘法與因式分解測試卷(3)_第1頁
第1頁 / 共18頁
人教初中數(shù)學(xué)人教版第14章 整式的乘法與因式分解測試卷(3)_第2頁
第2頁 / 共18頁
人教初中數(shù)學(xué)人教版第14章 整式的乘法與因式分解測試卷(3)_第3頁
第3頁 / 共18頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《人教初中數(shù)學(xué)人教版第14章 整式的乘法與因式分解測試卷(3)》由會(huì)員分享,可在線閱讀,更多相關(guān)《人教初中數(shù)學(xué)人教版第14章 整式的乘法與因式分解測試卷(3)(18頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、111 第14章 整式的乘法與因式分解 測試卷(3) 一、選擇題 1.下列運(yùn)算正確的是( ?。? A.2a3a=6 B.(ab2)2=ab4 C.(a+b)(a﹣b)=a2﹣b2 D.(a+b)2=a2+b2 2.下列計(jì)算正確的是( ?。? A.a(chǎn)3+a2=a5 B.(3a﹣b)2=9a2﹣b2 C.a(chǎn)6ba2=a3b D.(﹣ab3)2=a2b6 3.下列運(yùn)算正確的是( ?。? A.a(chǎn)2﹣a4=a8 B.(x﹣2)(x﹣3)=x2﹣6 C.(x﹣2)2=x2﹣4 D.2a+3a=5a 4.下列各式計(jì)算正確的是( ?。? A.(a﹣b)2=a2﹣b2 B.(﹣a4)3=a7 C.

2、2a?(﹣3b)=6ab D.a(chǎn)5a4=a(a≠0) 5.下列計(jì)算正確的是( ?。? A.m3+m2=m5 B.m3?m2=m6 C.(1﹣m)(1+m)=m2﹣1 D. 6.下列運(yùn)算正確的是( ?。? A.x6+x2=x3 B. C.(x+2y)2=x2+2xy+4y2 D. 7.圖(1)是一個(gè)長為2a,寬為2b(a>b)的長方形,用剪刀沿圖中虛線(對稱軸)剪開,把它分成四塊形狀和大小都一樣的小長方形,然后按圖(2)那樣拼成一個(gè)正方形,則中間空的部分的面積是(  ) A.a(chǎn)b B.(a+b)2 C.(a﹣b)2 D.a(chǎn)2﹣b2 8.若a+b=3,a﹣b=7,則ab=(  )

3、 A.﹣10 B.﹣40 C.10 D.40 9.下列各式的變形中,正確的是( ?。? A.(﹣x﹣y)(﹣x+y)=x2﹣y2 B.﹣x= C.x2﹣4x+3=(x﹣2)2+1 D.x(x2+x)=+1 10.下列運(yùn)算正確的是( ?。? A.a(chǎn)2?a3=a6 B.(﹣a+b)(a+b)=b2﹣a2 C.(a3)4=a7 D.a(chǎn)3+a5=a8 11.下列運(yùn)算正確的是(  ) A.a(chǎn)2?a3=a6 B.(a2)3=a5 C.2a2+3a2=5a6 D.(a+2b)(a﹣2b)=a2﹣4b2 12.請你計(jì)算:(1﹣x)(1+x),(1﹣x)(1+x+x2),…,猜想(1﹣x)(1+

4、x+x2+…+xn)的結(jié)果是( ?。? A.1﹣xn+1 B.1+xn+1 C.1﹣xn D.1+xn 13.有3張邊長為a的正方形紙片,4張邊長分別為a、b(b>a)的矩形紙片,5張邊長為b的正方形紙片,從其中取出若干張紙片,每種紙片至少取一張,把取出的這些紙片拼成一個(gè)正方形(按原紙張進(jìn)行無空隙、無重疊拼接),則拼成的正方形的邊長最長可以為(  ) A.a(chǎn)+b B.2a+b C.3a+b D.a(chǎn)+2b   二、填空題 14.當(dāng)m+n=3時(shí),式子m2+2mn+n2的值為 ?。? 15.定義為二階行列式.規(guī)定它的運(yùn)算法則為=ad﹣bc.那么當(dāng)x=1時(shí),二階行列式的值為 ?。? 16.填

5、空:x2+10x+  =(x+ ?。?. 17.已知a+b=3,a﹣b=5,則代數(shù)式a2﹣b2的值是  . 18.已知m+n=3,m﹣n=2,則m2﹣n2=  . 19.已知a+b=3,a﹣b=﹣1,則a2﹣b2的值為 ?。? 20.若a2﹣b2=,a﹣b=,則a+b的值為  . 21.已知a+b=4,a﹣b=3,則a2﹣b2= ?。? 22.化簡:(x+1)(x﹣1)+1=  . 23.若m=2n+1,則m2﹣4mn+4n2的值是  . 24.已知a、b滿足a+b=3,ab=2,則a2+b2= ?。? 25.若a+b=5,ab=6,則a﹣b= ?。? 26.若,則= ?。?  

6、 三、解答題 27.計(jì)算: (1)﹣(﹣2)2+(﹣0.1)0; (2)(x+1)2﹣(x+2)(x﹣2). 28.(1)計(jì)算:sin60﹣|1﹣|+﹣1 (2)化簡:(a+3)2﹣(a﹣3)2. 29.(1)填空: (a﹣b)(a+b)=  ; (a﹣b)(a2+ab+b2)=  ; (a﹣b)(a3+a2b+ab2+b3)=  . (2)猜想: (a﹣b)(an﹣1+an﹣2b+…+abn﹣2+bn﹣1)= ?。ㄆ渲衝為正整數(shù),且n≥2). (3)利用(2)猜想的結(jié)論計(jì)算: 29﹣28+27﹣…+23﹣22+2. 30.化簡:(a+b)(a﹣b)+2b2.  

7、 參考答案與試題解析 一、選擇題 1.下列運(yùn)算正確的是( ?。? A.2a3a=6 B.(ab2)2=ab4 C.(a+b)(a﹣b)=a2﹣b2 D.(a+b)2=a2+b2 【考點(diǎn)】平方差公式;冪的乘方與積的乘方;完全平方公式;整式的除法. 【分析】根據(jù)單項(xiàng)式的除法法則,以及冪的乘方,平方差公式以及完全平方公式即可作出判斷. 【解答】解:A、2a3a=2a2,故選項(xiàng)錯(cuò)誤; B、(ab2)2=a2b4,故選項(xiàng)錯(cuò)誤; C、正確; D、(a+b)2=a2+2ab+b2,故選項(xiàng)錯(cuò)誤. 故選C. 【點(diǎn)評(píng)】本題考查了平方差公式和完全平方公式的運(yùn)用,理解公式結(jié)構(gòu)是關(guān)鍵,需要熟

8、練掌握并靈活運(yùn)用.   2.下列計(jì)算正確的是(  ) A.a(chǎn)3+a2=a5 B.(3a﹣b)2=9a2﹣b2 C.a(chǎn)6ba2=a3b D.(﹣ab3)2=a2b6 【考點(diǎn)】完全平方公式;合并同類項(xiàng);冪的乘方與積的乘方;整式的除法. 【分析】分別根據(jù)合并同類項(xiàng)法則以及完全平方公式和整式的除法以及積的乘方分別計(jì)算得出即可. 【解答】解:A、a3+a2=a5無法運(yùn)用合并同類項(xiàng)計(jì)算,故此選項(xiàng)錯(cuò)誤; B、(3a﹣b)2=9a2﹣6ab+b2,故此選項(xiàng)錯(cuò)誤; C、a6ba2=a4b,故此選項(xiàng)錯(cuò)誤; D、(﹣ab3)2=a2b6,故此選項(xiàng)正確. 故選:D. 【點(diǎn)評(píng)】此題主要考查了完全平

9、方公式以及積的乘方和整式的除法等知識(shí),熟練掌握運(yùn)算法則是解題關(guān)鍵.   3.下列運(yùn)算正確的是( ?。? A.a(chǎn)2﹣a4=a8 B.(x﹣2)(x﹣3)=x2﹣6 C.(x﹣2)2=x2﹣4 D.2a+3a=5a 【考點(diǎn)】完全平方公式;合并同類項(xiàng);多項(xiàng)式乘多項(xiàng)式. 【分析】根據(jù)合并同類項(xiàng)的法則,多項(xiàng)式乘多項(xiàng)式的法則,完全平方公式對各選項(xiàng)分析判斷后利用排除法求解. 【解答】解:A、a2與a4不是同類項(xiàng),不能合并,故本選項(xiàng)錯(cuò)誤; B、(x﹣2)(x﹣3)=x2﹣5x+6,故本選項(xiàng)錯(cuò)誤; C、(x﹣2)2=x2﹣4x+4,故本選項(xiàng)錯(cuò)誤; D、2a+3a=5a,故本選項(xiàng)正確. 故選D.

10、 【點(diǎn)評(píng)】本題考查了合并同類項(xiàng),多項(xiàng)式乘多項(xiàng)式,完全平方公式,屬于基礎(chǔ)題,熟練掌握運(yùn)算法則與公式是解題的關(guān)鍵.   4.下列各式計(jì)算正確的是( ?。? A.(a﹣b)2=a2﹣b2 B.(﹣a4)3=a7 C.2a?(﹣3b)=6ab D.a(chǎn)5a4=a(a≠0) 【考點(diǎn)】完全平方公式;冪的乘方與積的乘方;同底數(shù)冪的除法;單項(xiàng)式乘單項(xiàng)式. 【分析】根據(jù)完全平方公式、積的乘方、單項(xiàng)式乘單項(xiàng)式的計(jì)算法則和同底數(shù)冪的除法法則計(jì)算即可求解. 【解答】解:A、(a﹣b)2=a2﹣2ab+b2,故選項(xiàng)錯(cuò)誤; B、(﹣a4)3=﹣a12,故選項(xiàng)錯(cuò)誤; C、2a?(﹣3b)=﹣6ab,故選項(xiàng)錯(cuò)誤

11、; D、a5a4=a(a≠0),故選項(xiàng)正確. 故選:D. 【點(diǎn)評(píng)】考查了完全平方公式、積的乘方、單項(xiàng)式乘單項(xiàng)式和同底數(shù)冪的除法,熟練掌握計(jì)算法則是解題的關(guān)鍵.   5.下列計(jì)算正確的是( ?。? A.m3+m2=m5 B.m3?m2=m6 C.(1﹣m)(1+m)=m2﹣1 D. 【考點(diǎn)】平方差公式;合并同類項(xiàng);同底數(shù)冪的乘法;分式的基本性質(zhì). 【分析】根據(jù)同類項(xiàng)的定義,以及同底數(shù)的冪的乘法法則,平方差公式,分式的基本性質(zhì)即可判斷. 【解答】解:A、不是同類項(xiàng),不能合并,故選項(xiàng)錯(cuò)誤; B、m3?m2=m5,故選項(xiàng)錯(cuò)誤; C、(1﹣m)(1+m)=1﹣m2,選項(xiàng)錯(cuò)誤; D、

12、正確. 故選D. 【點(diǎn)評(píng)】本題考查了同類項(xiàng)的定義,以及同底數(shù)的冪的乘法法則,平方差公式,分式的基本性質(zhì),理解平方差公式的結(jié)構(gòu)是關(guān)鍵.   6.下列運(yùn)算正確的是( ?。? A.x6+x2=x3 B. C.(x+2y)2=x2+2xy+4y2 D. 【考點(diǎn)】完全平方公式;立方根;合并同類項(xiàng);二次根式的加減法. 【分析】A、本選項(xiàng)不能合并,錯(cuò)誤; B、利用立方根的定義化簡得到結(jié)果,即可做出判斷; C、利用完全平方公式展開得到結(jié)果,即可做出判斷; D、利用二次根式的化簡公式化簡,合并得到結(jié)果,即可做出判斷. 【解答】解:A、本選項(xiàng)不能合并,錯(cuò)誤; B、=﹣2,本選項(xiàng)錯(cuò)誤; C

13、、(x+2y)2=x2+4xy+4y2,本選項(xiàng)錯(cuò)誤; D、﹣=3﹣2=,本選項(xiàng)正確. 故選D 【點(diǎn)評(píng)】此題考查了完全平方公式,合并同類項(xiàng),以及負(fù)指數(shù)冪,冪的乘方,熟練掌握公式及法則是解本題的關(guān)鍵.   7.圖(1)是一個(gè)長為2a,寬為2b(a>b)的長方形,用剪刀沿圖中虛線(對稱軸)剪開,把它分成四塊形狀和大小都一樣的小長方形,然后按圖(2)那樣拼成一個(gè)正方形,則中間空的部分的面積是( ?。? A.a(chǎn)b B.(a+b)2 C.(a﹣b)2 D.a(chǎn)2﹣b2 【考點(diǎn)】完全平方公式的幾何背景. 【分析】中間部分的四邊形是正方形,表示出邊長,則面積可以求得. 【解答】解:中間部分的

14、四邊形是正方形,邊長是a+b﹣2b=a﹣b, 則面積是(a﹣b)2. 故選:C. 【點(diǎn)評(píng)】本題考查了列代數(shù)式,正確表示出小正方形的邊長是關(guān)鍵.   8.若a+b=3,a﹣b=7,則ab=( ?。? A.﹣10 B.﹣40 C.10 D.40 【考點(diǎn)】完全平方公式. 【專題】計(jì)算題. 【分析】聯(lián)立已知兩方程求出a與b的值,即可求出ab的值. 【解答】解:聯(lián)立得:, 解得:a=5,b=﹣2, 則ab=﹣10. 故選A. 【點(diǎn)評(píng)】此題考查了解二元一次方程組,求出a與b的值是解本題的關(guān)鍵.   9.下列各式的變形中,正確的是(  ) A.(﹣x﹣y)(﹣x+y)=x2﹣

15、y2 B.﹣x= C.x2﹣4x+3=(x﹣2)2+1 D.x(x2+x)=+1 【考點(diǎn)】平方差公式;整式的除法;因式分解-十字相乘法等;分式的加減法. 【分析】根據(jù)平方差公式和分式的加減以及整式的除法計(jì)算即可. 【解答】解:A、(﹣x﹣y)(﹣x+y)=x2﹣y2,正確; B、,錯(cuò)誤; C、x2﹣4x+3=(x﹣2)2﹣1,錯(cuò)誤; D、x(x2+x)=,錯(cuò)誤; 故選A. 【點(diǎn)評(píng)】此題考查平方差公式和分式的加減以及整式的除法,關(guān)鍵是根據(jù)法則計(jì)算.   10.下列運(yùn)算正確的是( ?。? A.a(chǎn)2?a3=a6 B.(﹣a+b)(a+b)=b2﹣a2 C.(a3)4=a7 D

16、.a(chǎn)3+a5=a8 【考點(diǎn)】平方差公式;合并同類項(xiàng);同底數(shù)冪的乘法;冪的乘方與積的乘方. 【分析】A:根據(jù)同底數(shù)冪的乘法法則判斷即可. B:平方差公式:(a+b)(a﹣b)=a2﹣b2,據(jù)此判斷即可. C:根據(jù)冪的乘方的計(jì)算方法判斷即可. D:根據(jù)合并同類項(xiàng)的方法判斷即可. 【解答】解:∵a2?a3=a5, ∴選項(xiàng)A不正確; ∵(﹣a+b)(a+b)=b2﹣a2, ∴選項(xiàng)B正確; ∵(a3)4=a12, ∴選項(xiàng)C不正確; ∵a3+a5≠a8 ∴選項(xiàng)D不正確. 故選:B. 【點(diǎn)評(píng)】(1)此題主要考查了平方差公式,要熟練掌握,應(yīng)用平方差公式計(jì)算時(shí),應(yīng)注意以下幾個(gè)問題:

17、①左邊是兩個(gè)二項(xiàng)式相乘,并且這兩個(gè)二項(xiàng)式中有一項(xiàng)完全相同,另一項(xiàng)互為相反數(shù);②右邊是相同項(xiàng)的平方減去相反項(xiàng)的平方;③公式中的a和b可以是具體數(shù),也可以是單項(xiàng)式或多項(xiàng)式;④對形如兩數(shù)和與這兩數(shù)差相乘的算式,都可以運(yùn)用這個(gè)公式計(jì)算,且會(huì)比用多項(xiàng)式乘以多項(xiàng)式法則簡便. (2)此題還考查了同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加,要熟練掌握,解答此題的關(guān)鍵是要明確:①底數(shù)必須相同;②按照運(yùn)算性質(zhì),只有相乘時(shí)才是底數(shù)不變,指數(shù)相加. (3)此題還考查了冪的乘方和積的乘方,要熟練掌握,解答此題的關(guān)鍵是要明確:①(am)n=amn(m,n是正整數(shù));②(ab)n=anbn(n是正整數(shù)).

18、(4)此題還考查了合并同類項(xiàng)的方法,要熟練掌握.   11.下列運(yùn)算正確的是( ?。? A.a(chǎn)2?a3=a6 B.(a2)3=a5 C.2a2+3a2=5a6 D.(a+2b)(a﹣2b)=a2﹣4b2 【考點(diǎn)】平方差公式;合并同類項(xiàng);同底數(shù)冪的乘法;冪的乘方與積的乘方. 【分析】根據(jù)同底數(shù)冪的乘法,可判斷A,根據(jù)冪的乘方,可判斷B,根據(jù)合并同類項(xiàng),可判斷C,根據(jù)平方差公式,可判斷D. 【解答】解:A、底數(shù)不變指數(shù)相加,故A錯(cuò)誤; B、底數(shù)不變指數(shù)相乘,故B錯(cuò)誤; C、系數(shù)相加字母部分不變,故C錯(cuò)誤; D、兩數(shù)和乘以這兩個(gè)數(shù)的差等于這兩個(gè)數(shù)的平方差,故D正確; 故選:D.

19、 【點(diǎn)評(píng)】本題考查了平方差,利用了平方差公式,同底數(shù)冪的乘法,冪的乘方.   12.請你計(jì)算:(1﹣x)(1+x),(1﹣x)(1+x+x2),…,猜想(1﹣x)(1+x+x2+…+xn)的結(jié)果是(  ) A.1﹣xn+1 B.1+xn+1 C.1﹣xn D.1+xn 【考點(diǎn)】平方差公式;多項(xiàng)式乘多項(xiàng)式. 【專題】規(guī)律型. 【分析】已知各項(xiàng)利用多項(xiàng)式乘以多項(xiàng)式法則計(jì)算,歸納總結(jié)得到一般性規(guī)律,即可得到結(jié)果. 【解答】解:(1﹣x)(1+x)=1﹣x2, (1﹣x)(1+x+x2)=1+x+x2﹣x﹣x2﹣x3=1﹣x3, …, 依此類推(1﹣x)(1+x+x2+…+xn)

20、=1﹣xn+1, 故選:A 【點(diǎn)評(píng)】此題考查了平方差公式,多項(xiàng)式乘多項(xiàng)式,找出規(guī)律是解本題的關(guān)鍵.   13.有3張邊長為a的正方形紙片,4張邊長分別為a、b(b>a)的矩形紙片,5張邊長為b的正方形紙片,從其中取出若干張紙片,每種紙片至少取一張,把取出的這些紙片拼成一個(gè)正方形(按原紙張進(jìn)行無空隙、無重疊拼接),則拼成的正方形的邊長最長可以為( ?。? A.a(chǎn)+b B.2a+b C.3a+b D.a(chǎn)+2b 【考點(diǎn)】完全平方公式的幾何背景. 【專題】壓軸題. 【分析】根據(jù)3張邊長為a的正方形紙片的面積是3a2,4張邊長分別為a、b(b>a)的矩形紙片的面積是4ab,5張邊長為b的正

21、方形紙片的面積是5b2,得出a2+4ab+4b2=(a+2b)2,再根據(jù)正方形的面積公式即可得出答案. 【解答】解;3張邊長為a的正方形紙片的面積是3a2, 4張邊長分別為a、b(b>a)的矩形紙片的面積是4ab, 5張邊長為b的正方形紙片的面積是5b2, ∵a2+4ab+4b2=(a+2b)2, ∴拼成的正方形的邊長最長可以為(a+2b), 故選:D. 【點(diǎn)評(píng)】此題考查了完全平方公式的幾何背景,關(guān)鍵是根據(jù)題意得出a2+4ab+4b2=(a+2b)2,用到的知識(shí)點(diǎn)是完全平方公式.   二、填空題 14.當(dāng)m+n=3時(shí),式子m2+2mn+n2的值為 9?。? 【考點(diǎn)】完全平方

22、公式. 【分析】將代數(shù)式化為完全平方公式的形式,代入即可得出答案. 【解答】解:m2+2mn+n2=(m+n)2=9. 故答案為:9. 【點(diǎn)評(píng)】本題考查了完全平方公式的知識(shí),解答本題的關(guān)鍵是掌握完全平方公式的形式.   15.定義為二階行列式.規(guī)定它的運(yùn)算法則為=ad﹣bc.那么當(dāng)x=1時(shí),二階行列式的值為 0?。? 【考點(diǎn)】完全平方公式. 【專題】新定義. 【分析】根據(jù)題中的新定義將所求式子化為普通運(yùn)算,計(jì)算即可得到結(jié)果. 【解答】解:根據(jù)題意得:當(dāng)x=1時(shí),原式=(x﹣1)2=0. 故答案為:0 【點(diǎn)評(píng)】此題考查了完全平方公式,弄清題中的新定義是解本題的關(guān)鍵.  

23、 16.填空:x2+10x+ 25 =(x+ 5?。?. 【考點(diǎn)】完全平方式. 【分析】完全平方公式:(ab)2=a22ab+b2,從公式上可知. 【解答】解:∵10x=25x, ∴x2+10x+52=(x+5)2. 故答案是:25;5. 【點(diǎn)評(píng)】本題考查了完全平方公式,兩數(shù)的平方和,再加上或減去它們積的2倍,就構(gòu)成了一個(gè)完全平方式.要求熟悉完全平方公式,并利用其特點(diǎn)解題.   17.已知a+b=3,a﹣b=5,則代數(shù)式a2﹣b2的值是 15?。? 【考點(diǎn)】平方差公式. 【專題】計(jì)算題. 【分析】原式利用平方差公式化簡,將已知等式代入計(jì)算即可求出值. 【解答】解:∵a+b

24、=3,a﹣b=5, ∴原式=(a+b)(a﹣b)=15, 故答案為:15 【點(diǎn)評(píng)】此題考查了平方差公式,熟練掌握平方差公式是解本題的關(guān)鍵.   18.已知m+n=3,m﹣n=2,則m2﹣n2= 6?。? 【考點(diǎn)】平方差公式. 【分析】根據(jù)平方差公式,即可解答. 【解答】解:m2﹣n2 =(m+n)(m﹣n) =32 =6. 故答案為:6. 【點(diǎn)評(píng)】本題考查了平方差公式,解決本題的關(guān)鍵是熟記平方差公式.   19.已知a+b=3,a﹣b=﹣1,則a2﹣b2的值為 ﹣3?。? 【考點(diǎn)】平方差公式. 【專題】計(jì)算題. 【分析】原式利用平方差公式化簡,將已知等式代入計(jì)算

25、即可求出值. 【解答】解:∵a+b=3,a﹣b=﹣1, ∴原式=(a+b)(a﹣b)=﹣3, 故答案為:﹣3. 【點(diǎn)評(píng)】此題考查了平方差公式,熟練掌握平方差公式是解本題的關(guān)鍵.   20.若a2﹣b2=,a﹣b=,則a+b的值為 ?。? 【考點(diǎn)】平方差公式. 【專題】計(jì)算題. 【分析】已知第一個(gè)等式左邊利用平方差公式化簡,將a﹣b的值代入即可求出a+b的值. 【解答】解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=, ∴a+b=. 故答案為:. 【點(diǎn)評(píng)】此題考查了平方差公式,熟練掌握平方差公式是解本題的關(guān)鍵.   21.已知a+b=4,a﹣b=3,則a2﹣b2= 

26、12?。? 【考點(diǎn)】平方差公式. 【專題】計(jì)算題. 【分析】根據(jù)a2﹣b2=(a+b)(a﹣b),然后代入求解. 【解答】解:a2﹣b2=(a+b)(a﹣b)=43=12. 故答案是:12. 【點(diǎn)評(píng)】本題重點(diǎn)考查了用平方差公式.平方差公式為(a+b)(a﹣b)=a2﹣b2.本題是一道較簡單的題目.   22.化簡:(x+1)(x﹣1)+1= x2?。? 【考點(diǎn)】平方差公式. 【分析】運(yùn)用平方差公式求解即可. 【解答】解:(x+1)(x﹣1)+1 =x2﹣1+1 =x2. 故答案為:x2. 【點(diǎn)評(píng)】本題主要考查了平方差公式,熟記公式是解題的關(guān)鍵.   23.若m=2

27、n+1,則m2﹣4mn+4n2的值是 1?。? 【考點(diǎn)】完全平方公式. 【專題】計(jì)算題. 【分析】所求式子利用完全平方公式變形,將已知等式變形后代入計(jì)算即可求出值. 【解答】解:∵m=2n+1,即m﹣2n=1, ∴原式=(m﹣2n)2=1. 故答案為:1 【點(diǎn)評(píng)】此題考查了完全平方公式,熟練掌握公式是解本題的關(guān)鍵.   24.已知a、b滿足a+b=3,ab=2,則a2+b2= 5 . 【考點(diǎn)】完全平方公式. 【專題】計(jì)算題. 【分析】將a+b=3兩邊平方,利用完全平方公式化簡,將ab的值代入計(jì)算,即可求出所求式子的值. 【解答】解:將a+b=3兩邊平方得:(a+b)2=

28、a2+2ab+b2=9, 把a(bǔ)b=2代入得:a2+4+b2=9, 則a2+b2=5. 故答案為:5. 【點(diǎn)評(píng)】此題考查了完全平方公式,熟練掌握完全平方公式是解本題的關(guān)鍵.   25.若a+b=5,ab=6,則a﹣b= 1?。? 【考點(diǎn)】完全平方公式. 【分析】首先根據(jù)完全平方公式將(a﹣b)2用(a+b)與ab的代數(shù)式表示,然后把a(bǔ)+b,ab的值整體代入求值. 【解答】解:(a﹣b)2=(a+b)2﹣4ab=52﹣46=1, 則a﹣b=1. 故答案是:1. 【點(diǎn)評(píng)】本題主要考查完全平方公式,熟記公式的幾個(gè)變形公式對解題大有幫助.   26.若,則= 6 . 【考點(diǎn)】

29、完全平方公式;非負(fù)數(shù)的性質(zhì):偶次方;非負(fù)數(shù)的性質(zhì):算術(shù)平方根. 【專題】計(jì)算題;壓軸題;整體思想. 【分析】根據(jù)非負(fù)數(shù)的性質(zhì)先求出a2+、b的值,再代入計(jì)算即可. 【解答】解:∵, ∴+(b+1)2=0, ∴a2﹣3a+1=0,b+1=0, ∴a+=3, ∴(a+)2=32, ∴a2+=7; b=﹣1. ∴=7﹣1=6. 故答案為:6. 【點(diǎn)評(píng)】本題考查了非負(fù)數(shù)的性質(zhì),完全平方公式,整體思想,解題的關(guān)鍵是整體求出a2+的值.   三、解答題 27.計(jì)算: (1)﹣(﹣2)2+(﹣0.1)0; (2)(x+1)2﹣(x+2)(x﹣2). 【考點(diǎn)】完全平方公式;

30、實(shí)數(shù)的運(yùn)算;平方差公式;零指數(shù)冪. 【分析】(1)原式第一項(xiàng)利用平方根的定義化簡,第二項(xiàng)表示兩個(gè)﹣2的乘積,最后一項(xiàng)利用零指數(shù)冪法則計(jì)算即可得到結(jié)果; (2)原式第一項(xiàng)利用完全平方公式展開,第二項(xiàng)利用平方差公式化簡,去括號(hào)合并即可得到結(jié)果. 【解答】解:(1)原式=3﹣4+1=0; (2)原式=x2+2x+1﹣x2+4=2x+5. 【點(diǎn)評(píng)】此題考查了完全平方公式,合并同類項(xiàng),以及負(fù)指數(shù)冪,冪的乘方,熟練掌握公式及法則是解本題的關(guān)鍵.   28.(1)計(jì)算:sin60﹣|1﹣|+﹣1 (2)化簡:(a+3)2﹣(a﹣3)2. 【考點(diǎn)】完全平方公式;實(shí)數(shù)的運(yùn)算;負(fù)整數(shù)指數(shù)冪;特殊

31、角的三角函數(shù)值. 【分析】(1)根據(jù)特殊角的三角函數(shù)值,絕對值,負(fù)整數(shù)指數(shù)冪分別求出每一部分的值,再代入求出即可; (2)先根據(jù)完全平方公式展開,再合并同類項(xiàng)即可. 【解答】解:(1)原式=﹣(﹣1)+2 =﹣+1+2 =﹣+3; (2)原式=a2+6a+9﹣(a2﹣6a+9) =a2+6a+9﹣a2+6a﹣9 =12a. 【點(diǎn)評(píng)】本題考查了特殊角的三角函數(shù)值,絕對值,負(fù)整數(shù)指數(shù)冪,完全平方公式的應(yīng)用,主要考查學(xué)生的計(jì)算能力.   29.(1)填空: (a﹣b)(a+b)= a2﹣b2??; (a﹣b)(a2+ab+b2)= a3﹣b3 ; (a﹣b)(a3+a2b+

32、ab2+b3)= a4﹣b4?。? (2)猜想: (a﹣b)(an﹣1+an﹣2b+…+abn﹣2+bn﹣1)= an﹣bn?。ㄆ渲衝為正整數(shù),且n≥2). (3)利用(2)猜想的結(jié)論計(jì)算: 29﹣28+27﹣…+23﹣22+2. 【考點(diǎn)】平方差公式. 【專題】規(guī)律型. 【分析】(1)根據(jù)平方差公式與多項(xiàng)式乘以多項(xiàng)式的運(yùn)算法則運(yùn)算即可; (2)根據(jù)(1)的規(guī)律可得結(jié)果; (3)原式變形后,利用(2)得出的規(guī)律計(jì)算即可得到結(jié)果. 【解答】解:(1)(a﹣b)(a+b)=a2﹣b2; (a﹣b)(a2+ab+b2)=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3; (

33、a﹣b)(a3+a2b+ab2+b3)=a4+a3b+a2b2+ab3﹣a3b﹣a2b2﹣ab3﹣b4=a4﹣b4; 故答案為:a2﹣b2,a3﹣b3,a4﹣b4; (2)由(1)的規(guī)律可得: 原式=an﹣bn, 故答案為:an﹣bn; (3)29﹣28+27﹣…+23﹣22+2=(2﹣1)(28+26+24+22+2)=342. 法二:29﹣28+27﹣…+23﹣22+2 =29﹣28+27﹣…+23﹣22+2﹣1+1 ==342 【點(diǎn)評(píng)】此題考查了多項(xiàng)式乘以多項(xiàng)式,弄清題中的規(guī)律是解本題的關(guān)鍵.   30.化簡:(a+b)(a﹣b)+2b2. 【考點(diǎn)】平方差公式;合并同類項(xiàng). 【專題】計(jì)算題. 【分析】先根據(jù)平方差公式算乘法,再合并同類項(xiàng)即可. 【解答】解:原式=a2﹣b2+2b2 =a2+b2. 【點(diǎn)評(píng)】本題考查了平方差公式和整式的混合運(yùn)算的應(yīng)用,主要考查學(xué)生的化簡能力. 111

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!