高考數(shù)學理一輪資料包 第五章 不等式
《高考數(shù)學理一輪資料包 第五章 不等式》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學理一輪資料包 第五章 不等式(18頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 精品資料 第五章 不等式 第1講 不等式的概念與性質(zhì) 1.已知四個條件:①b>0>a;②0>a>b;③a>0>b;④a>b>0,能推出<成立的有( ) A.1個 B.2個 C.3個 D.4個 2.已知下列不等式:①x2+3>2x,②a3+b3≥a2b+ab2(a,b∈R+);③a2+b2≥2(a-b-1),其中正確的個數(shù)為( ) A.0個 B.1個 C.2個 D.3個 3.在等比數(shù)列{an}中,an>0(n∈N),公比q≠1,則( ) A.a(chǎn)1+a8>a4+a
2、5 B.a(chǎn)1+a8
3、+d≤4,則( )
A.a(chǎn)∧b≥2,c∧d≤2 B.a(chǎn)∧b≥2,c∨d≥2
C.a(chǎn)∨b≥2,c∧d≤2 D.a(chǎn)∨b≥2,c∨d≥2
7.若數(shù)列{an},{bn}的通項公式分別是an=(-1)n+2012a,bn=2+,且an 4、意兩個不相等的正數(shù)a,b,證明:a2b+ab2比a3+b3接近2ab;
(3)已知函數(shù)f(x)的定義域D={x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中更接近0的那個值.寫出函數(shù)f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明).
10.已知α∈(0,π),比較2sin2α與的大?。?
第2講 一元二次不等式及其解法
1.(2012年浙江)設(shè)集合A={x|1 5、<x<4},集合B={x|x2-2x-3≤0},則A∩(?RB)=( )
A.(1,4)
B.(3,4)
C.(1,3)
D.(1,2)∪(3,4)
2.如果kx2+2kx-(k+2)<0恒成立,那么實數(shù)k的取值范圍是( )
A.-1≤k≤0
B.-1≤k<0
C.-1 6、)∪(2,+∞)
B.(-1,2)
C.(1,2)
D.(-∞,1)∪(2,+∞)
5.(2012年山東)若不等式|kx-4|≤2的解集為{x|1≤x≤3},則實數(shù)k=__________.
6.(2012年廣東)不等式|x+2|-|x|≤1的解集為__________.
7.(2011年上海)不等式≤3的解為_____________.
8.不等式ax2+bx+c>0的解集區(qū)間為,對于系數(shù)a,b,c,有如下結(jié)論:①a<0;②b>0;③c>0;④a+b+c>0;⑤a-b+c>0,其中正確的結(jié)論的序號是____________.
9.定義:已知函數(shù)f(x)在[m,n](m<n 7、)上的最小值為t,若t≤m恒成立,則稱函數(shù)f(x)在[m,n](m<n)上具有“DK”性質(zhì).
(1)判斷函數(shù)f(x)=x2-2x+2在[1,2]上是否具有“DK”性質(zhì),說明理由;
(2)若f(x)=x2-ax+2在[a,a+1]上具有“DK”性質(zhì),求a的取值范圍.
10.(2013年廣東中山模擬)設(shè)函數(shù)f(x)=mx2-mx-1.
(1)若對于一切實數(shù)x,f(x)<0恒成立,求m的取值范圍;
(2)若對于x∈[1,3],f(x)<-m+5恒成立,求m的取值范圍.
第3講 算術(shù)平均數(shù)與幾何平均數(shù)
1.若A為兩正數(shù)a 8、,b的等差中項,G為兩正數(shù)a,b的等比中項,則ab與AG的大小關(guān)系為( )
A.a(chǎn)b≤AG B.a(chǎn)b≥AG
C.a(chǎn)b>AG D.a(chǎn)b 9、12年上海)函數(shù)y=log2x+(x∈[2,4])的最大值是________.
6.(2012年天津)設(shè)m,n∈R,若直線l:mx+ny-1=0與x軸相交于點A,與y軸相交于點B,且l與圓x2+y2=4相交所得弦的長為2,點O為坐標原點,則△AOB面積的最小值為________.
7.(2011年浙江)若實數(shù)x,y滿足x2+y2+xy=1,則x+y的最大值是________.
8.若正數(shù)a,b滿足ab=a+b+3,則ab的取值范圍為__________,a+b的取值范圍為__________.
9.已知函數(shù)f(x)=x3-ax2+10x(x∈R).
(1)若a=3,點P為曲線y= 10、f(x)上的一個動點,求以點P為切點的切線斜率取最小值時的切線方程;
(2)若函數(shù)y=f(x)在(0,+∞)上為單調(diào)增函數(shù),試求a的取值范圍.
10.某地區(qū)要建造一條防洪堤,其橫斷面為等腰梯形,腰與底邊成角為60(如圖K531),考慮到防洪堤堅固性及石塊用料等因素,設(shè)計其橫斷面要求面積為9 平方米,且高度不低于米.記防洪堤橫斷面的腰長為x(單位:米),外周長(梯形的上底線段BC與兩腰長的和)為y(單位:米).
(1)求y關(guān)于x的函數(shù)關(guān)系式,并指出其定義域;
(2)要使防洪堤橫斷面的外周長不超過10.5米,則其腰長x應(yīng)在什么范圍內(nèi)? 11、
(3)當防洪堤的腰長x為多少米時,堤的上面與兩側(cè)面的水泥用料最省(即斷面的外周長最小)?求此時外周長的值.
圖K531
第4講 簡單的線性規(guī)劃
1.(2012年天津)設(shè)變量x,y滿足約束條件則目標函數(shù)z=3x-2y的最小值為( )
A.-5 B.-4 C.-2 D.3
2.(2013年大綱)記不等式組所表示的平面區(qū)域為D.若直線y=a(x+1)與D有公共點,則a的取值范圍是____________.
3.(2012年廣東廣州一模)在平面直角坐標系中,若不等式組 12、表示的平面區(qū)域的面積為4,則實數(shù)t的值為( )
A.1 B.2 C.3 D.4
4.設(shè)二元一次不等式組所表示的平面區(qū)域為M,使函數(shù)y=logax(a>0,a≠1)的圖象過區(qū)域M的a的取值范圍是( )
A.[1,3] B.[2,]
C.[2,9] D.[,9]
5.(2012年江西)某農(nóng)戶計劃種植黃瓜和韭菜,種植面積不超過50畝,投入資金不超過54萬元,假設(shè)種植黃瓜和韭菜的產(chǎn)量、成本和售價如下表:
年產(chǎn)量/畝
年種植成本/畝
每噸售價
黃瓜
4噸
1.2萬元
0.55萬元
韭菜
6噸
0.9萬元
0.3萬元
為使一年的種植總利潤(總利潤=總銷售 13、收入-總種植成本)最大,那么黃瓜和韭菜的種植面積(單位:畝)分別為( )
A.50,0 B.30,20 C.20,30 D.0,50
6.(2011年福建)已知點O是坐標原點,點A(-1,1),若點M(x,y)為平面區(qū)域上的一個動點,則的取值范圍是( )
A.[-1,0] B.[0,1] C.[0,2] D.[-1,2]
7.(2011年四川)某運輸公司有12名駕駛員和19名工人,有8輛載重為10噸的甲型卡車和7輛載重為6噸的乙型卡車.某天需運往A地至少72噸的貨物,派用的每輛車需滿載且只運送一次.派用的每輛甲型卡車需配2名工人,運送一次可得利潤450元;派用的每輛乙型 14、卡車需配1名工人,運送一次可得利潤350元,該公司合理計劃當天派用兩類卡車的車輛數(shù),可得最大利潤為( )
A.4650元 B.4700元 C.4900元 D.5000元
8.(2012年廣東廣州調(diào)研)已知實數(shù)x,y滿足若目標函數(shù)z=ax+y(a≠0)取得最小值時的最優(yōu)解有無數(shù)個,則實數(shù)a的值為( )
A.-1 B.- C. D.1
9.已知變量x,y滿足約束條件則的取值范圍是________.
10.某營養(yǎng)師要為某個兒童預(yù)定午餐和晚餐.已知一個單位的午餐含12個單位的碳水化合物,6個單位的蛋白質(zhì)和6個單位的維生素C;一個單位的晚餐含8個單位的碳水化合物,6個單位的 15、蛋白質(zhì)和10個單位的維生素C.另外,該兒童這兩餐需要的營養(yǎng)中至少含64個單位的碳水化合物,42個單位的蛋白質(zhì)和54個單位的維生素C.如果一個單位的午餐、晚餐的費用分別是2.5元和4元,那么要滿足上述的營養(yǎng)要求,并且花費最少,應(yīng)當為該兒童分別預(yù)定多少個單位的午餐和晚餐?
第5講 不等式的應(yīng)用
1.某汽車運輸公司購買了一批豪華大客車投入營運,據(jù)市場分析:每輛客車營運的總利潤y(單位:10萬元)與營運年數(shù)x的函數(shù)關(guān)系為y=-(x-6)2+11(x∈N*),則每輛客車營運( )年,其運營的年平均利潤最大? 16、( )
A.3 B.4 C.5 D.6
2.(2013年山東)設(shè)正實數(shù)x,y,z滿足x2-3xy+4y2-z=0,則當取得最小值時,x+2y-z的最大值為( )
A.0 B. C.2 D.
3.已知f(x)=x3-3x+m,在[0,2]上任取三個數(shù)a,b,c,均存在以f(a),f(b),f(c)為邊長的三角形,則m的取值范圍為( )
A.m>2 B.m>4
C.m>6 D.m>8
4.某單位用2160萬元購得一塊空地,計劃在該地塊上建造一棟至少10層、每層2000平方米的樓房.經(jīng)測算,若將樓房建為x(x≥10)層,則每平方米的平均建筑費用為560+48x(單 17、位:元).為了使樓房每平方米的平均綜合費用最少,則樓房應(yīng)建為( )
A.10層 B.15層
C.20層 D.30層
5.(2013年山東)在平面直角坐標系xOy中,M為不等式組所表示的區(qū)域上一動點,則|OM|的最小值為________.
6.一份印刷品,其排版面積為432 cm2(矩形),要求左右留有4 cm的空白,上下留有3 cm的空白,則當矩形的長為________cm,寬為________cm時,用紙最?。?
7.某工廠投入98萬元購買一套設(shè)備,第一年的維修費用為12萬元,以后每年增加4萬元,每年可收入50萬元.就此問題給出以下命題:①前兩年沒能收回成本;②前5年的平均年利 18、潤最多;③前10年總利潤最多;④第11年是虧損的;⑤10年后每年雖有盈利但與前10年比年利潤有所減少(總利潤=總收入-投入資金-總維修費).其中真命題是________.
8.(2011年江蘇)在平面直角坐標系xOy中,過坐標原點的一條直線與函數(shù)f(x)=的圖象交于P,Q兩點,則線段PQ長的最小值是________.
9.某森林出現(xiàn)火災(zāi),火勢正以每分鐘100 m2的速度順風蔓延,消防站接到警報立即派消防隊員前去,在火災(zāi)發(fā)生后五分鐘到達救火現(xiàn)場,已知消防隊員在現(xiàn)場平均每人每分鐘滅火50 m2,所消耗的滅火材料、勞務(wù)津貼等費用為每人每分鐘125元,另附加每次救火所耗損的車輛、器械和裝備等費 19、用平均每人100元,而燒毀1 m2森林損失費為60元.問應(yīng)該派多少消防隊員前去救火,才能使總損失最少?
10.(2012年江蘇)如圖K551,建立平面直角坐標系xOy,x軸在地平面上,y軸垂直于地平面,單位長度為1千米.某炮位于坐標原點.已知炮彈發(fā)射后的軌跡在方程y=kx-(1+k2)x2(k>0)表示的曲線上,其中k與發(fā)射方向有關(guān).炮的射程是指炮彈落地點的橫坐標.
(1)求炮的最大射程;
(2)設(shè)在第一象限有一飛行物(忽略其大小),其飛行高度為3.2千米,試問當它的橫坐標a不超過多少時,炮彈可以擊中它?請說明理由.
圖K551
20、
第6講 不等式選講
1.不等式|x-2|>x-2的解集是( )
A.(-∞,2) B.(-∞,+∞)
C.(2,+∞) D.(-∞,2)∪(2,+∞)
2.設(shè)集合A={x||x-a|<1,x∈R},B={x||x-b|>2,x∈R}.若A?B,則實數(shù)a,b必滿足( )
A.|a+b|≤3 B.|a+b|≥3
C.|a-b|≤3 D.|a-b|≥3
3.不等式1≤|x-3|≤6的解集是( )
A.{x|-3≤x≤2或4≤x≤9}
B.{x|-3≤x≤9}
C.{x|-1≤ 21、x≤2}
D.{x|4≤x≤9}
4.若不等式|ax+2|<4的解集為(-1,3),則實數(shù)a等于( )
A.8 B.2
C.-4 D.-2
5.不等式|x-5|+|x+3|≥10的解集是( )
A.[-5,7]
B.[-4,6]
C.(-∞,-5]∪[7,+∞)
D.(-∞,-4]∪[6,+∞)
6.若不等式|3x-b|<4的解集中的整數(shù)有且僅有1,2,3,則b的取值范圍________.
7.(2011年天津)已知集合A={x∈R||x+3|+|x-4|≤9},B=,則集合A∩B=__________.
8.(2011年陜西)若關(guān)于x的不等式|a|≥| 22、x+1|+|x-2|存在實數(shù)解,則實數(shù)a的取值范圍是________________________________________________________________________.
9.已知函數(shù)f(x)=|x-7|-|x-3|.
(1)作出函數(shù)f(x)的圖象;
(2)當x<5時,不等式|x-8|-|x-a|>2恒成立,求a的取值范圍.
10.(2013年新課標Ⅰ)已知函數(shù)f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(1)當a=-2時,求不等式f(x)<g(x)的解集;
(2)設(shè)a>-1,且當x∈時,f(x)≤g(x),求a的取 23、值范圍.
第五章 不等式
第1講 不等式的概念與性質(zhì)
1.C 2.D 3.A 4.B
5.C 解析:此類題目多選用篩選法,對于A:當x=時,兩邊相等,故A錯誤;對于B:具有基本不等式的形式,但sinx不一定大于零,故B錯誤;對于C:x2+1≥2|x|?x22x+1≥0?(x1)2≥0,顯然成立;對于D,任意x都不成立.故選C.
6.C 解析:∵a∧b=a∨b=
正數(shù)a,b,c,d滿足ab≥4,c+d≤4,
∴不妨令a=1,b=4,則a∧b=1≥2錯誤,故可排除A,B;
再令c=1,d=1,滿足條件c+d≤4,但不滿足c∨d≥2,故可排除D.故選C.
7.
8.6 解析:設(shè) 24、有x輛汽車,則貨物重為(4x+20)噸.由題意,得解得5<x<7,且x∈N*.故只有x=6才滿足要求.
9.(1)解:由題意,得|x2-1|<3,解得x∈(-2,2).
(2)證明:對任意兩個不相等的正數(shù)a,b,
有a2b+ab2>2ab,a3+b3>2ab,
因為|a2b+ab2-2ab|-|a3+b3-2ab|
=-(a+b)(a-b)2<0,
所以|a2b+ab2-2ab|<|a3+b3-2ab|,
即a2b+ab2比a3+b3接近2ab.
(3)解:f(x)==1-|sinx|,x≠kπ,k∈Z,
f(x)是偶函數(shù),f(x)是周期函數(shù),最小正周期T=π,函數(shù)f(x)的 25、最小值為0,
函數(shù)f(x)在區(qū)間單調(diào)遞增,在區(qū)間單調(diào)遞減,k∈Z.
10.解:2sin2α-=
=(-4cos2α+4cosα-1)=-(2cosα-1)2.
∵α∈(0,π),∴sinα>0,1-cosα>0,(2cosα-1)2≥0.
∴-(2cosα-1)2≤0,即2sin2α-≤0.
∴2sin2α≤.
第2講 一元二次不等式及其解法
1.B 2.C 3.A 4.A
5.2 解析:由|kx-4|≤4,可得2≤kx≤6,所以1≤x≤3,所以=1,故k=2.
6. 7.x<0或x≥
8.①②③④ 解析:∵不等式ax2+bx+c>0的解集為,∴a<0;-,2是方程ax2 26、+bx+c=0的兩根,-+2=->0,∴b>0;f(0)=c>0,f(-1)=a-b+c<0,f(1)=a+b+c>0.故正確答案為①②③④.
9.解:(1)∵f(x)=x2-2x+2,x∈[1,2],
∴f(x)min=1≤1.
∴函數(shù)f(x)在[1,2]上具有“DK”性質(zhì).
(2)f(x)=x2-ax+2,x∈[a,a+1],其對稱軸為x=.
①當≤a時,即a≥0時,
函數(shù)f(x)min=f(a)=a2-a2+2=2.
若函數(shù)f(x)具有“DK”性質(zhì),則有2≤a總成立,即a≥2.
②當a<<a+1,即-2<a<0時,
f(x)min=f=-+2.
若函數(shù)f(x)具有“D 27、K”性質(zhì),則有-+2≤a總成立,
解得a∈?.
③當≥a+1,即a≤-2時,
函數(shù)f(x)的最小值為f(a+1)=a+3.
若函數(shù)f(x)具有“DK”性質(zhì),則有a+3≤a,解得a∈?.
綜上所述,若f(x)在[a,a+1]上具有“DK”性質(zhì),則a≥2.
10.解:(1)要使mx2-mx-1<0恒成立,
若m=0,顯然-1<0成立;
若m≠0,則解得-4 28、.A 2.A
3.C 解析:∵x>2,∴f(x)=x+=(x-2)++2≥2 +2=4,當且僅當x-2=,即x=3時取等號.
4.B 解析:∵x2-3xy+4y2-z=0,
∴z=x2-3xy+4y2,又x,y,z均為正實數(shù),
∴==≤=1(當且僅當x=2y時取“=”),
∴max=1,此時,x=2y.
∴z=x2-3xy+4y2=(2y)2-32yy+4y2=2y2.
∴+-=+-=-2+1≤1.
∴+-的最大值為1.
5.5
6.3 解析:直線與兩坐標軸的交點坐標為A,B,直線與圓相交所得的弦長為2,圓心到直線的距離d滿足d2=r2-12=4-1=3,∴d=,即圓心到直 29、線的距離d==,∴m2+n2=.S△ABC==.又S=≥=3,當且僅當|m|=|n|=時取等號,∴S△ABC的最小值為3.
7. 解析:∵x2+y2+xy=1,∴(x+y)2-xy=1.即(x+y)2-2≤1.∴(x+y)2≤,-≤x+y≤.
8.[9,+∞) [6,+∞) 解析一:由ab=a+b+3≥2+3,即ab-2-3≥0,
即(-3)(+1)≥0,∵≥0,∴+1≥1,故-3≥0,
∴ab≥9.當且僅當a=b=3時取等號.
∵≤,∴ab=a+b+3≤2.
即(a+b)2-4(a+b)-12≥0,
(a+b-6)(a+b+2)≥0,
∵a+b+2>0,有a+b-6≥0,即a 30、+b≥6,
∴a+b的取值范圍是[6,+∞).
當且僅當a=b=3時取等號.
解析二:由ab=a+b+3,則b=,
ab=a+=a+4+=a-1++5
≥2+5=9,當且僅當a=b=3時取等號.
∴ab的取值范圍是[9,+∞).
由ab=a+b+3,則b=,
a+b=a+=a+1+=a-1++2
≥2+2=6,當且僅當a=b=3時取等號.
∴a+b的取值范圍是[6,+∞).
9.解:(1)設(shè)切線的斜率為k,
則f′(x)=x2-6x+10=(x-3)2+1.
顯然當x=3時切線斜率取最小值1,又f(3)=12,
∴所求切線方程為y-12=x-3,即x-y+9=0.
31、
(2)f′(x)=x2-2ax+10.
∵y=f(x)在x∈(0,+∞)為單調(diào)遞增函數(shù),
即對任意的x∈(0,+∞),恒有f′(x)≥0,
即f′(x)=x2-2ax+10≥0,∴a≤=+.
而+≥,當且僅當x=時,等號成立,
∴a≤.
10.解:(1)9 =(AD+BC)h,
其中AD=BC+2=BC+x,h=x,
∴9 =(2BC+x)x,得BC=-.
由得2≤x<6.
∴y=BC+2x=+(2≤x<6).
(2)y=+≤10.5,得3≤x≤4.
∵[3,4]?[2,6),∴腰長x的范圍是[3,4].
(3)y=+≥2 =6 ,
當且僅當=,即x=2 ∈[2, 32、6)時等號成立.
∴外周長的最小值為6 米,此時腰長為2 米.
第4講 簡單的線性規(guī)劃
1.B 2. 3.B
4.C 解析:區(qū)域M是一個三角形區(qū)域,三個頂點的坐標是(8,3),(10,2),(9,1),結(jié)合圖形檢驗可知:當a∈[2,9]時,符合題目要求.
5.B 解析:設(shè)黃瓜和韭菜的種植面積分別為x,y畝,種植總利潤為z萬元,則目標函數(shù)z=(0.554x-1.2x)+(0.36y-0.9y)=x+0.9y.
作出約束條件如圖D70的陰影部分.
易求得點A(0,50),B(30,20),C(45,0).
平移直線x+0.9y=0,當直線x+0.9y=0經(jīng)過點B(30,20)時,z 33、取得最大值為48.故選B.
圖D70 圖D71
6.C 解析:設(shè)z==(-1,1)(x,y)=-x+y.作出可行域,如圖D71.直線z=-x+y,即y=x+z經(jīng)過點B(1,1)時,z最小,zmin=-1+1=0;y=x+z經(jīng)過點C(0,2)時,z最大,zmax=0+2=2,∴的取值范圍是.
7.C 解析:設(shè)派用甲型卡車x(單位:輛),乙型卡車y(單位:輛),獲得的利潤為u(單位:元),u=450x+350y,
x,y滿足關(guān)系式作出相應(yīng)的可行區(qū)域
u=450x+350y=50(9x+7y),在由確定的交點(7,5)處取得最大值49 34、00元.故選C.
8.A 解析:若目標函數(shù)z=ax+y(a≠0)取得最小值時的最優(yōu)解有無數(shù)個,則直線y=-ax+z與直線2x-2y+1=0平行,有-a=1,即a=-1.故選A.
9. 解析:由得A.
∴kOA=.由得B(1,6).∴kOB=6.
∵表示過可行域內(nèi)一點(x,y)及原點的直線的斜率,
∴由約束條件畫出可行域(如圖D72),
則的取值范圍為[kOA,kOB],即.
圖D72
10.解:設(shè)該兒童分別預(yù)訂x,y個單位的午餐和晚餐,共花費z元,則z=2.5x+4y.
可行域為即
作出可行域如圖D73:
經(jīng)檢驗發(fā)現(xiàn),當x=4,y=3時,花費最少,
最少花費 35、為z=2.5x+4y=2.54+43=22(元).
圖D73
第5講 不等式的應(yīng)用
1.C 2.C
3.C 解析:f′(x)=3(x+1)(x-1),列表知:函數(shù)f(x)在[0,2]上有最小值f(1)=m-2,最大值f(2)=m+2.∵f(a),f(b),f(c)為三角形的邊,由任意兩邊之和大于第三邊,得m-2+m-2>m+2,解得m>6.故選C.
4.B 解析:設(shè)樓房每平方米的平均綜合費用為f(x)元,則
f(x)=(560+48x)+
=560+48x+=560+48
≥560+482 =2000(x≥10,x∈Z+).
當且僅當x=,即x=15時,f(x)取得最 36、小值為f(15)=2000.
5. 解析:不等式組表示的區(qū)域如圖D74,|OM|的最小值為就是坐標原點O到直線x+y-2=0的距離d==.
圖D74
6.24 18 解析:設(shè)矩形的長為x cm,則寬為 cm,則總面積為
y=(x+8)=432+48+6x+=480+6≥480+62 =768,當且僅當x=,即x=24時取等號,此時寬為=18 (cm).
7.①③④
8.4 解析:設(shè)交點坐標為,,則PQ=≥4.
9.解:設(shè)派x名消防隊員前去救火,用t分鐘將火撲滅,總損失為y元,則t==.
y=125tx+100x+60(500+100t)
=125x+100x+30 37、 000+
=1250+100(x-2+2)+30 000+
=31 450+100(x-2)+
≥31 450+2 =36 450.
當且僅當100(x-2)=,即x=27時,y有最小值為36 450.
故應(yīng)該派27名消防隊員前去救火,才能使總損失最少,最少損失為36 450元.
10.解:(1)在y=kx-(1+k2)x2(k>0)中,
令y=0,得kx-(1+k2)x2=0.
由實際意義和題設(shè)條件,知:x>0,k>0,
∴x==≤=10,當且僅當k=1時取等號.
∴炮的最大射程是10千米.
(2)∵a>0,∴炮彈可以擊中目標等價于存在k>0,
使ka-(1+k2) 38、a2=3.2成立,
即關(guān)于k的方程a2k2-20ak+a2+64=0有正根.
由Δ=(-20a)2-4a2(a2+64)≥0,得00(不考慮另一根),
∴當a不超過6千米時,炮彈可以擊中目標.
第6講 不等式選講
1.A 2.D 3.A 4.D
5.D 解析:方法一:當x≤-3時,|x-5|+|x+3|=5-x-x-3=2-2x≥10,即x≤-4,∴x≤-4.
當-3 39、式的解集為(-∞,-4]∪[6,+∞).故選D.
方法二:可用特值檢驗法,首先x=0不是不等式的解,排除A、B;x=6是不等式的解,排除C.故選D.
6.(5,7) 7.{x|-2≤x≤5}
8.(-∞,-3]∪[3,+∞) 解析:當x≤-1時,
|x+1|+|x-2|=-x-1-x+2=-2x+1≥3;
當-1 40、∵f(x)=
圖象如圖D75所示.
(2)∵x<5,∴|x-8|-|x-a|>2,即8-x-|x-a|>2,即|x-a|<6-x,對x<5恒成立.
即x-6
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習題含答案
- 2煤礦安全監(jiān)測工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識競賽試題
- 1 礦井泵工考試練習題含答案
- 2煤礦爆破工考試復(fù)習題含答案
- 1 各種煤礦安全考試試題含答案