精校版高一數學人教B版必修4雙基限時練13 正切函數的圖象與性質 Word版含解析

上傳人:仙*** 文檔編號:43188184 上傳時間:2021-11-30 格式:DOC 頁數:9 大小:92KB
收藏 版權申訴 舉報 下載
精校版高一數學人教B版必修4雙基限時練13 正切函數的圖象與性質 Word版含解析_第1頁
第1頁 / 共9頁
精校版高一數學人教B版必修4雙基限時練13 正切函數的圖象與性質 Word版含解析_第2頁
第2頁 / 共9頁
精校版高一數學人教B版必修4雙基限時練13 正切函數的圖象與性質 Word版含解析_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《精校版高一數學人教B版必修4雙基限時練13 正切函數的圖象與性質 Word版含解析》由會員分享,可在線閱讀,更多相關《精校版高一數學人教B版必修4雙基限時練13 正切函數的圖象與性質 Word版含解析(9頁珍藏版)》請在裝配圖網上搜索。

1、最新資料最新資料最新資料最新資料最新資料 雙基限時練(十三) 基 礎 強 化 1.函數y=tan在一個周期內的圖象是(  ) 解析 由-≠kπ+,k∈Z可知,x≠2kπ+,k∈Z.令k=0,則x≠;k=-1,則x≠-.結合選項可知,A正確. 答案 A 2.函數f(x)=tan的單調遞減區(qū)間為(  ) A.,k∈Z B.,k∈Z C.,k∈Z D.(kπ,(k+1)π),k∈Z 解析 f(x)=tan=-tan, ∴kπ-<x-<kπ+,k∈Z, ∴kπ-<x<kπ+,k∈Z. ∴f(x)的遞減區(qū)間為(k∈Z). 答案 B 3.與函數f

2、(x)=tan的圖象不相交的一條直線是(  ) A.x=           B.y= C.x= D.y= 解析 令2x+=kπ+,k∈Z, ∴x=kπ+,k∈Z. ∴y=tan與一組平行線x=kπ+,k∈Z均不相交,當k=0時,x=,故選C. 答案 C 4.若直線y=m(m為常數)與函數f(x)=tanωx(ω>0)的圖象的相鄰兩支相交于A、B兩點,且|AB|=,則(  ) A.函數f(x)的最小正周期為 B. ω= C.函數f(x)圖象的對稱中心的坐標為(k∈Z) D.函數|f(x)|圖象的對稱軸方程均可表示為x=(k∈Z) 解析 由|AB|=,故T=,∴

3、ω=4.故A、B錯; 令4x=kπ,k∈Z,∴x=kπ,k∈Z. ∴y=tan4x的對稱中心為(k∈Z).故選C. y=|f(x)|圖象的對稱軸方程為x=,故D錯. 答案 C 5.下列不等式中正確的是(  ) A.tan<tan B.tan>tan C.tan<tan D.tan>tan 解析 tan=tan, tan=tan, ∵正切函數在上是增函數, ∴tan>tan. 答案 D 6.在區(qū)間范圍內,函數y=tanx與函數y=sinx的圖象交點的個數為(  ) A.1 B.2 C.3 D.4 解析 在同一坐標系中,首先作出y=sinx與

4、y=tanx在內的圖象.由三角函數線知,當x∈時,tanx>sinx,故在上,兩函數圖象無交點, 又∵y=tanx和y=sinx均為奇函數, ∴當x∈時,兩函數圖象也無交點, ∴兩函數圖象在上共有兩個交點(0,0),(π,0). 從圖象可知有3個交點. 答案 C 7.滿足tan≥-的x的集合是________. 答案 ,k∈Z 8.已知函數f(x)=tanωx在內是減函數,則ω的取值范圍為________. 解析 ∵f(x)在內單調遞減, ∴ω<0,且≥π,∴|ω|≤1,∴-1≤ω<0. 答案 [-1,0) 能 力 提 升 9.已知函數y=tan(2x+φ)

5、的圖象的一個對稱中心為.若|φ|<,則φ的值為________. 解析 y=tan(2x+φ)的對稱中心為(k∈Z). ∵y=tan(2x+φ)的一個對稱中心為. 故-=,k∈Z.∴φ=-,k∈Z. ∵|φ|<,∴φ=或-. 答案 或- 10.比較下列各組數的大小: (1)tan2與tan9; (2)logtan70°,logsin25°,cos25°. 解析 (1)∵tan9=tan(-2π+9), 而<2<-2π+9<π, 且y=tanx在內是增函數, ∴tan2<tan(-2π+9). 即tan2

6、<tan9. (2)∵tan70°>tan45°=1, ∴l(xiāng)ogtan70°<0. 又0<sin25°<sin30°=, ∴l(xiāng)ogsin25°>1. 而0<cos25°<1, ∴<cos25°<1. ∴l(xiāng)ogtan70°<cos25°<logsin25°. 11.討論函數y=tan的定義域、周期和單調區(qū)間. 解析 由2x-≠kπ+得 x≠+π,k∈Z, ∴函數的定義域為{x|x≠+π,k∈Z}

7、, 周期T=. 由kπ-<2x-<kπ+,k∈Z, 得-<x<+π,k∈Z. ∴單調增區(qū)間為(k∈Z). 12.已知f(x)=x2+2x·tanθ-1,x∈[-1,],其中θ∈. (1)當θ=-時,求函數f(x)的最大值與最小值; (2)求θ的取值范圍,使y=f(x)在區(qū)間[-1,]上是單調函數. 解析 (1)當θ=-時, f(x)=x2-x-1=2-,x∈[-1,]. ∴x=時,f(x)的最小值為-; x=-1時,f(x)的最大值為. (2)函數f(x)=(x+tanθ)2-1-tan2θ圖象的對稱軸為 x=-tanθ. ∵y=f(x)在[-1,]上是單調函數; ∴-tanθ≤-1或-tanθ≥, 即tanθ≥1或tanθ≤-. 因此,θ的取值范圍是∪. 品 味 高 考 13.已知函數f(x)=Atan(ωx+φ),y=f(x)的部分圖象如圖,則f=(  ) A.2+ B. C. D.2- 解析 由圖象可知:T=2=,∴ω=2. ∴2×+φ=kπ+.又|φ|<, ∴φ=.又f(0)=1,∴Atan=1, 得A=1,∴f(x)=tan. ∴f=tan=tan=,故選B. 答案 B 最新精品資料

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!