《人教版 小學(xué)9年級(jí) 數(shù)學(xué)上冊(cè) 教案22.2 二次函數(shù)與一元二次方程1》由會(huì)員分享,可在線閱讀,更多相關(guān)《人教版 小學(xué)9年級(jí) 數(shù)學(xué)上冊(cè) 教案22.2 二次函數(shù)與一元二次方程1(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、精品資料人教版初中數(shù)學(xué)
教學(xué)時(shí)間
課題
26.2用函數(shù)的觀點(diǎn)看一元二次方程(1)
課型
新授課
教
學(xué)
目
標(biāo)
知 識(shí)
和
能 力
通過(guò)探索,使學(xué)生理解二次函數(shù)與一元二次方程、一元二次不等式之間的聯(lián)系。
過(guò) 程
和
方 法
使學(xué)生能夠運(yùn)用二次函數(shù)及其圖象、性質(zhì)解決實(shí)際問(wèn)題,提高學(xué)生用數(shù)學(xué)的意識(shí)。
情 感
態(tài) 度
價(jià)值觀
進(jìn)一步培養(yǎng)學(xué)生綜合解題能力,滲透數(shù)形結(jié)合思想。
教學(xué)重點(diǎn)
使學(xué)生理解二次函數(shù)與一元二次方程、一元二次不等式之間的聯(lián)系,能夠運(yùn)用二次函數(shù)及其圖象、性質(zhì)去解決實(shí)際問(wèn)題
教學(xué)難點(diǎn)
進(jìn)一步培養(yǎng)學(xué)生綜合解題能力,滲透數(shù)形結(jié)合的
2、思想
教學(xué)準(zhǔn)備
教師
多媒體課件
學(xué)生
“五個(gè)一”
課 堂 教 學(xué) 程 序 設(shè) 計(jì)
設(shè)計(jì)意圖
一、引言
在現(xiàn)實(shí)生活中,我們常常會(huì)遇到與二次函數(shù)及其圖象有關(guān)的問(wèn)題,如拱橋跨度、拱高計(jì)算等,利用二次函數(shù)的有關(guān)知識(shí)研究和解決這些問(wèn)題,具有很現(xiàn)實(shí)的意義。本節(jié)課,請(qǐng)同學(xué)們共同研究,嘗試解決以下幾個(gè)問(wèn)題。
二、探索問(wèn)題
問(wèn)題1:某公園要建造一個(gè)圓形的噴水池,在水池中央垂直于水面豎一根柱子,上面的A處安裝一個(gè)噴頭向外噴水。連噴頭在內(nèi),柱高為0.8m。水流在各個(gè)方向上沿形狀相同的拋物線路徑落下,如圖(1)所示。
根據(jù)設(shè)計(jì)圖紙已知:如圖(2)中所示直角坐標(biāo)系
3、中,水流噴出的高度y(m)與水平距離x(m)之間的函數(shù)關(guān)系式是y=-x2+2x+。
(1)噴出的水流距水平面的最大高度是多少?
(2)如果不計(jì)其他的因素,那么水池至少為多少時(shí),才能使噴出的水流都落在水池內(nèi)?
教學(xué)要點(diǎn)
1.讓學(xué)生討論、交流,如何將文學(xué)語(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言,得出問(wèn)題(1)就是求函數(shù)y=-x2+2x+最大值,問(wèn)題(2)就是求如圖(2)B點(diǎn)的橫坐標(biāo);
2.學(xué)生解答,教師巡視指導(dǎo);
3.讓一兩位同學(xué)板演,教師講評(píng)。
問(wèn)題2:一個(gè)涵洞成拋物線形,它的截面如圖(3)所示,現(xiàn)測(cè)得,當(dāng)水面寬AB=1.6m時(shí),涵洞頂點(diǎn)與水面的距離為2.4m。這時(shí),離開(kāi)水面1.5m處,涵洞寬ED是多少
4、?是否會(huì)超過(guò)1m?
教學(xué)要點(diǎn)
1.教師分析:根據(jù)已知條件,要求ED的寬,只要求出FD的長(zhǎng)度。在如圖(3)的直角坐標(biāo)系中,即只要求出D點(diǎn)的橫坐標(biāo)。因?yàn)辄c(diǎn)D在涵洞所成的拋物線上,又由已知條件可得到點(diǎn)D的縱坐標(biāo),所以利用拋物線的函數(shù)關(guān)系式可以進(jìn)一步算出點(diǎn)D的橫坐標(biāo)。
2.讓學(xué)生完成解答,教師巡視指導(dǎo)。
3.教師分析存在的問(wèn)題,書(shū)寫(xiě)解答過(guò)程。
解:以AB的垂直平分線為y軸,以過(guò)點(diǎn)O的y軸的垂線為x軸,建立直角坐標(biāo)系。
這時(shí),涵洞的橫截面所成拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸為y軸,開(kāi)口向下,所以可設(shè)它的 函數(shù)關(guān)系式為:y=ax2 (a<0) (1)
因?yàn)锳B與y軸相交于C點(diǎn),所以CB=
5、=0.8(m),又OC=2.4m,所以點(diǎn)B的坐標(biāo)是(0.8,-2.4)。
因?yàn)辄c(diǎn)B在拋物線上,將它的坐標(biāo)代人(1),得 -2.4=a0.82 所以:a=-
因此,函數(shù)關(guān)系式是 y=-x2 (2)
。。。。。。。。。。。。。。。。。。。。
問(wèn)題3:畫(huà)出函數(shù)y=x2-x-3/4的圖象,根據(jù)圖象回答下列問(wèn)題。
(1)圖象與x軸交點(diǎn)的坐標(biāo)是什么;
(2)當(dāng)x取何值時(shí),y=0?這里x的取值與方程x2-x-=0有什么關(guān)系?
(3)你能從中得到什么啟發(fā)?
教學(xué)要點(diǎn)
1.先讓學(xué)生回顧函數(shù)y=ax2+bx+c圖象的畫(huà)法,按列表、描點(diǎn)、連線等步驟畫(huà)出函數(shù)y=x2-x-的圖象。
6、
2.教師巡視,與學(xué)生合作、交流。
3.教師講評(píng),并畫(huà)出函數(shù)圖象,如圖(4)所示。
4.教師引導(dǎo)學(xué)生觀察函數(shù)圖象,回答(1)提出的問(wèn)題,得到圖象與x軸交點(diǎn)的坐標(biāo)分別是(-,0)和(,0)。
5.讓學(xué)生完成(2)的解答。教師巡視指導(dǎo)并講評(píng)。
6.對(duì)于問(wèn)題(3),教師組織學(xué)生分組討論、交流,各組選派代表發(fā)表意見(jiàn),全班交流,達(dá)成共識(shí):從“形”的方面看,函數(shù)y=x2-x-的圖象與x軸交點(diǎn)的橫坐標(biāo),即為方程x2-x-=0的解;從“數(shù)”的方面看,當(dāng)二次函數(shù)y=x2-x-的函數(shù)值為0時(shí),相應(yīng)的自變量的值即為方程x2-x-=0的解。更一般地,函數(shù)y=ax2+bx+c的圖象與x軸交點(diǎn)的橫坐標(biāo)即為方程a
7、x2+bx+c=0的解;當(dāng)二次函數(shù)y=ax2+bx+c的函數(shù)值為0時(shí),相應(yīng)的自變量的值即為方程ax2+bx+c=0的解,這一結(jié)論反映了二次函數(shù)與一元二次方程的關(guān)系。
三、試一試
根據(jù)問(wèn)題3的圖象回答下列問(wèn)題。
(1)當(dāng)x取何值時(shí),y<0?當(dāng)x取何值時(shí),y>0?
(當(dāng)-<x<時(shí),y<0;當(dāng)x<-或x>時(shí),y>0)
(2)能否用含有x的不等式來(lái)描述(1)中的問(wèn)題? (能用含有x的不等式采描述(1)中的問(wèn)題,即x2-x-<0的解集是什么?x2-x->0的解集是什么?)
想一想:二次函數(shù)與一元二次不等式有什么關(guān)系?
讓學(xué)生類(lèi)比二次函數(shù)
8、與一元二次不等式方程的關(guān)系,討論、交流,達(dá)成共識(shí):
(1)從“形”的方面看,二次函數(shù)y=ax2+bJ+c在x軸上方的圖象上的點(diǎn)的橫坐標(biāo),即為一元二次不等式ax2+bx+c>0的解;在x軸下方的圖象上的點(diǎn)的橫坐標(biāo).即為一元二次不等式ax2+bx+c<0的解。
(2)從“數(shù)”的方面看,當(dāng)二次函數(shù)y=ax2+bx+c的函數(shù)值大于0時(shí),相應(yīng)的自變量的值即為一元二次不等式ax2+bx+c>0的解;當(dāng)二次函數(shù)y=ax2+bx+c的函數(shù)值小于0時(shí),相應(yīng)的自變量的值即為一元二次不等式ax2+bc+c<0的解。這一結(jié)論反映了二次函數(shù)與一元二次不等式的關(guān)系。
四、小結(jié): 1.通過(guò)本節(jié)課的學(xué)習(xí),你有什么收獲?有什么困惑?
2.若二次函數(shù)y=ax2+bx+c的圖象與x軸無(wú)交點(diǎn),試說(shuō)明,元二次方程ax2+bx+c=0和一元二次不等式ax2+bx+c>0、ax2+bx+c<0的解的情況。
作業(yè)
設(shè)計(jì)
必做
教科書(shū)P19:1、2
選做
教科書(shū)P20:5
教學(xué)
反思