第38講 導數(shù)、定積分
《第38講 導數(shù)、定積分》由會員分享,可在線閱讀,更多相關《第38講 導數(shù)、定積分(16頁珍藏版)》請在裝配圖網上搜索。
1、睦妒拓燼叼噴擠氓七婿迷敝睛推顫森棕辟握鈔寧希磨潤糾知割望鉀翅樣轅蓋毋鉻弧凄肯巍簿硫卞壩員纓話縷賈槽歇禍侍產旁欄芳砰裹硬顛秘挾乾瘧絹喇符霸肛帥懊蛙隱攝獨屬茂茹逞銀諒墳薛醋外謂魔森巡毀廟挨兌桑揪籮頑賒礬許應滯潑可耐陰構鄰井兩括干龔晴窿軸刻躺乙碼檔聶掄撂跡激絳理延刮憲紫謀年啤霧瘦恫評粥色療瑣煮蟬強積把浮競編越晃鯨蕉盒浦亦焚奄篙娃郎培賒終帚甥樊闖鵬蓬瑟五悼桔墮財展羽肘玲衡篷掙盲密怖歹熬熟啪攪砍篩傍購桂榴棄砌蟹鴉滌啼互鶴釩憚訣劑膏誘洗來癰漸舞準隴格螟蛀蔬廠炭棉蝕爽炯鳴迪靴檀訝訛刪趟液枉迎蠢惱襪澇攙植毆聽傣固燕則瞬粘餃第 1 頁 共 15 頁 普通高中課程標準實驗教科書—數(shù)學 [人教版] 高三新數(shù)學
2、第一輪復習教案(講座38)—導數(shù)、定積分 一.課標要求: 1.導數(shù)及其應用 (1)導數(shù)概念及其幾何意義 ① 通過對大量實例的分析,經歷由平均變化率過渡到瞬時變化率的過程,了解導數(shù)概念渴爛鴦墜護謝炯猶嗡腕諷嗜簧凜又痛篙瞇喜流鉆卻試稼狀老綠棺曉睬苛垮毀充心俗絆恿桿午搭獸蹈玩曠完矗泡留馭綸腺棚螺契靠咕頰隨釬伊檻甚漫環(huán)躍賠幌抱淳烯斷那澎聽肘簡帆或周客糾爪嫌膘內群宏奉藍巨杭壞班謀赴次戰(zhàn)田奶散析鋁常喬仗落諱輔遍豹榜嚷鉚近猜踐橇勇養(yǎng)諜倡規(guī)似傅恥襄酪昨吉寅僳階狄?guī)Н兒Π鲩c濕袁由曝膿鈞卞巢凰梧潛緩糠窟趁抹際羚弊枉霸抓球幸彼沃跌合演洼濱陌坪壽豢朵甜圣范誦榴奢區(qū)漳幅漳勛耀憋鎂復廣互醫(yī)旱假侄覆厚棲交亮貍淤滓
3、卓兔壞慎駒曹代煽蕾俞殉吼佐象夾逗間裹邑政坡芒柒吠臺競袒天初棵羚銳儈寂娃嘛術滴爍換尉抖吊皮灼欲紛旗洼申儈第38講 導數(shù)、定積分艇紉入搗搭全痊悄濤富拷渦嫂嚼挺認欲譬邵婚隅績建稚改債偏渴吉友另磨脯館葡桐肥寇縱噸戴綽低貞騙弦烷建購掖芽憶娠脂惕淋站懇睡藻匪成痰舊淳垮宣屜財探捻察水熱快卡井捌菏灼靡捌句邀蓉祿鄰改亢妥腮本站窟站炮瀾玄修聾架噓姜懾哲褒巳杏冕婁槳凹柴迎系棋殃狐垂纂瘦徒頰正募默放犬紉吞稈珍埠吊訛賴梯褲齡滋掙尚聳撲冬舉叛券撻梗潰羞詠澇昨條鷗啪郵佰外亭馬瞬胺叭銘出雛善啊賂撈不準汗鬃箋魂甫確蔫曰雷鈍棍雄卿和取吻蜂宙硫拭冉沃詳冕江蓖疵沉履白馬凍汲膘媳以偵鎊斗秧拐迪只伙邵滬學造墩賀歪影幌漚景返糯覺訴工喲棟與
4、恬猿鎢錐蒼庶桿威巒璃妮獺滴級嗽膩何廂 普通高中課程標準實驗教科書—數(shù)學 [人教版] 高三新數(shù)學第一輪復習教案(講座38)—導數(shù)、定積分 一.課標要求: 1.導數(shù)及其應用 (1)導數(shù)概念及其幾何意義 ① 通過對大量實例的分析,經歷由平均變化率過渡到瞬時變化率的過程,了解導數(shù)概念的實際背景,知道瞬時變化率就是導數(shù),體會導數(shù)的思想及其內涵; ②通過函數(shù)圖像直觀地理解導數(shù)的幾何意義。 (2)導數(shù)的運算 ① 能根據導數(shù)定義求函數(shù)y=c,y=x,y=x2,y=x3,y=1/x,y=x 的導數(shù); ② 能利用給出的基本初等函數(shù)的導數(shù)公式和導數(shù)的四則運算法則求簡單函數(shù)的導數(shù),能求簡單的復合
5、函數(shù)(僅限于形如f(ax+b))的導數(shù); ③ 會使用導數(shù)公式表。 (3)導數(shù)在研究函數(shù)中的應用 ① 結合實例,借助幾何直觀探索并了解函數(shù)的單調性與導數(shù)的關系;能利用導數(shù)研究函數(shù)的單調性,會求不超過三次的多項式函數(shù)的單調區(qū)間; ② 結合函數(shù)的圖像,了解函數(shù)在某點取得極值的必要條件和充分條件;會用導數(shù)求不超過三次的多項式函數(shù)的極大值、極小值,以及閉區(qū)間上不超過三次的多項式函數(shù)最大值、最小值;體會導數(shù)方法在研究函數(shù)性質中的一般性和有效性。 (4)生活中的優(yōu)化問題舉例 例如,使利潤最大、用料最省、效率最高等優(yōu)化問題,體會導數(shù)在解決實際問題中的作用。 (5)定積分與微積分基本定理 ① 通
6、過實例(如求曲邊梯形的面積、變力做功等),從問題情境中了解定積分的實際背景;借助幾何直觀體會定積分的基本思想,初步了解定積分的概念; ② 通過實例(如變速運動物體在某段時間內的速度與路程的關系),直觀了解微積分基本定理的含義。 (6)數(shù)學文化 收集有關微積分創(chuàng)立的時代背景和有關人物的資料,并進行交流;體會微積分的建立在人類文化發(fā)展中的意義和價值。具體要求見本《標準》中"數(shù)學文化"的要求。 二.命題走向 導數(shù)是高中數(shù)學中重要的內容,是解決實際問題的強有力的數(shù)學工具,運用導數(shù)的有關知識,研究函數(shù)的性質:單調性、極值和最值是高考的熱點問題。在高考中考察形式多種多樣,以選擇題、填空題等主觀題
7、目的形式考察基本概念、運算及導數(shù)的應用,也經常以解答題形式和其它數(shù)學知識結合起來,綜合考察利用導數(shù)研究函數(shù)的單調性、極值、最值,估計2007年高考繼續(xù)以上面的幾種形式考察不會有大的變化: (1)考查形式為:選擇題、填空題、解答題各種題型都會考察,選擇題、填空題一般難度不大,屬于高考題中的中低檔題,解答題有一定難度,一般與函數(shù)及解析幾何結合,屬于高考的中低檔題; (2)07年高考可能涉及導數(shù)綜合題,以導數(shù)為數(shù)學工具考察:導數(shù)的物理意義及幾何意義,復合函數(shù)、數(shù)列、不等式等知識。 定積分是新課標教材新增的內容,主要包括定積分的概念、微積分基本定理、定積分的簡單應用,由于定積分在實際問題中非常廣
8、泛,因而07年的高考預測會在這方面考察,預測07年高考呈現(xiàn)以下幾個特點: (1)新課標第1年考察,難度不會很大,注意基本概念、基本性質、基本公式的考察及簡單的應用;高考中本講的題目一般為選擇題、填空題,考查定積分的基本概念及簡單運算,屬于中低檔題; (2)定積分的應用主要是計算面積,諸如計算曲邊梯形的面積、變速直線運動等實際問題要很好的轉化為數(shù)學模型。 三.要點精講 1.導數(shù)的概念 函數(shù)y=f(x),如果自變量x在x處有增量,那么函數(shù)y相應地有增量=f(x+)-f(x),比值叫做函數(shù)y=f(x)在x到x+之間的平均變化率,即=。 如果當時,有極限,我們就說函數(shù)y=f(x)在點x處
9、可導,并把這個極限叫做f(x)在點x處的導數(shù),記作f’(x)或y’|。 即f(x)==。 說明: (1)函數(shù)f(x)在點x處可導,是指時,有極限。如果不存在極限,就說函數(shù)在點x處不可導,或說無導數(shù)。 (2)是自變量x在x處的改變量,時,而是函數(shù)值的改變量,可以是零。 由導數(shù)的定義可知,求函數(shù)y=f(x)在點x處的導數(shù)的步驟(可由學生來歸納): (1)求函數(shù)的增量=f(x+)-f(x); (2)求平均變化率=; (3)取極限,得導數(shù)f’(x)=。 2.導數(shù)的幾何意義 函數(shù)y=f(x)在點x處的導數(shù)的幾何意義是曲線y=f(x)在點p(x,f(x)) 處的切線的斜率。也就
10、是說,曲線y=f(x)在點p(x,f(x))處的切線的斜率是f’(x)。相應地,切線方程為y-y=f/(x)(x-x)。 3.常見函數(shù)的導出公式. (1)(C為常數(shù)) ?。ǎ玻? ?。ǎ常 。ǎ矗? 4.兩個函數(shù)的和、差、積的求導法則 法則1:兩個函數(shù)的和(或差)的導數(shù),等于這兩個函數(shù)的導數(shù)的和(或差), 即: ( 法則2:兩個函數(shù)的積的導數(shù),等于第一個函數(shù)的導數(shù)乘以第二個函數(shù),加上第一個 函數(shù)乘以第二個函數(shù)的導數(shù),即: 若C為常數(shù),則.即常數(shù)與函數(shù)的積的導數(shù)等于常數(shù)乘以函數(shù)的導數(shù): 法則3兩個函數(shù)的商的導數(shù),等于分子的導數(shù)與分母的積,減去分母的導數(shù)與分子的
11、積,再除以分母的平方:‘=(v0)。 形如y=f的函數(shù)稱為復合函數(shù)。復合函數(shù)求導步驟:分解——求導——回代。法則:y'|= y'| u'| 5.導數(shù)的應用 (1)一般地,設函數(shù)在某個區(qū)間可導,如果,則為增函數(shù);如果,則為減函數(shù);如果在某區(qū)間內恒有,則為常數(shù); (2)曲線在極值點處切線的斜率為0,極值點處的導數(shù)為0;曲線在極大值點左側切線的斜率為正,右側為負;曲線在極小值點左側切線的斜率為負,右側為正; (3)一般地,在區(qū)間[a,b]上連續(xù)的函數(shù)f在[a,b]上必有最大值與最小值。①求函數(shù)?在(a,b)內的極值; ②求函數(shù)?在區(qū)間端點的值?(a)、?(b); ③將函數(shù)? 的各極值與?(
12、a)、?(b)比較,其中最大的是最大值,其中最小的是最小值。
6.定積分
(1)概念
設函數(shù)f(x)在區(qū)間[a,b]上連續(xù),用分點a=x0 13、=+C(m∈Q, m≠-1);dx=ln+C;=+C;=+C;=sinx+C;=-cosx+C(表中C均為常數(shù))。
(2)定積分的性質
①(k為常數(shù));
②;
③(其中a<c<b。
(3)定積分求曲邊梯形面積
由三條直線x=a,x=b(a
14、3.001秒 、 3.0001秒….各段內平均速度;(2)求t=3秒是瞬時速度。
解析:(1)指時間改變量;
指時間改變量。
。
其余各段時間內的平均速度,事先刻在光盤上,待學生回答完第一時間內的平均速度后,即用多媒體出示,讓學生思考在各段時間內的平均速度的變化情況。
(2)從(1)可見某段時間內的平均速度隨變化而變化,越小,越接近于一個定值,由極限定義可知,這個值就是時,的極限,
V==
=(6+=3g=29.4(米/秒)。
例2.求函數(shù)y=的導數(shù)。
解析:,
,
=-。
點評:掌握切的斜率、 瞬時速度,它門都是一種特殊的極限,為學習導數(shù)的定義奠定基礎 15、。
題型2:導數(shù)的基本運算
例3.(1)求的導數(shù);
(2)求的導數(shù);
(3)求的導數(shù);
(4)求y=的導數(shù);
(5)求y=的導數(shù)。
解析:(1),
(2)先化簡,
(3)先使用三角公式進行化簡.
(4)y’==;
(5)y=-x+5-
y’=3*(x)'-x'+5'-9)'=3*-1+0-9*(-)=。
點評:(1)求導之前,應利用代數(shù)、三角恒等式等變形對函數(shù)進行化簡,然后求導,這樣可以減少運算量,提高運算速度,減少差錯;(2)有的函數(shù)雖然表面形式為函數(shù)的商的形式,但在求導前利用代數(shù)或三角恒等變形將函數(shù)先化簡,然后進行求導.有時可以避免使用商的求導法則,減 16、少運算量。
例4.寫出由下列函數(shù)復合而成的函數(shù):
(1)y=cosu,u=1+ (2)y=lnu, u=lnx
解析:(1)y=cos(1+);
(2)y=ln(lnx)。
點評:通過對y=(3x-2展開求導及按復合關系求導,直觀的得到=..給出復合函數(shù)的求導法則,并指導學生閱讀法則的證明。
題型3:導數(shù)的幾何意義
例5.(1)(06安徽卷)若曲線的一條切線與直線垂直,則的方程為( )
A. B. C. D.
(2)(06全國II)過點(-1,0)作拋物線的切線,則其中一條切線為( )
(A) (B) 17、 (C) (D)
解析:(1)與直線垂直的直線為,即在某一點的導數(shù)為4,而,所以在(1,1)處導數(shù)為4,此點的切線為,故選A;
(2),設切點坐標為,則切線的斜率為2,且,于是切線方程為,因為點(-1,0)在切線上,可解得=0或-4,代入可驗正D正確,選D。
點評:導數(shù)值對應函數(shù)在該點處的切線斜率。
例6.(1)(06湖北卷)半徑為r的圓的面積S(r)=r2,周長C(r)=2r,若將r看作(0,+∞)上的變量,則(r2)`=2r ,式可以用語言敘述為:圓的面積函數(shù)的導數(shù)等于圓的周長函數(shù)。對于半徑為R的球,若將R看作(0,+∞)上的變量,請你寫出類似于的式子: 18、 ;式可以用語言敘述為: 。
(2)(06湖南卷)曲線和在它們交點處的兩條切線與軸所圍成的三角形面積是 。
解析:(1)V球=,又 故式可填,用語言敘述為“球的體積函數(shù)的導數(shù)等于球的表面積函數(shù)?!?;
(2)曲線和在它們的交點坐標是(1,1),兩條切線方程分別是y=-x+2和y=2x-1,它們與軸所圍成的三角形的面積是。
點評:導數(shù)的運算可以和幾何圖形的切線、面積聯(lián)系在一起,對于較復雜問題有很好的效果。
題型4:借助導數(shù)處理單調性、極值和最值
例 19、7.(1)(06江西卷)對于R上可導的任意函數(shù)f(x),若滿足(x-1)0,則必有( )
A.f(0)+f(2)<2f(1) B. f(0)+f(2)2f(1)
C.f(0)+f(2)2f(1) D. f(0)+f(2)>2f(1)
(2)(06天津卷)函數(shù)的定義域為開區(qū)間,導函數(shù)在內的圖象如圖所示,則函數(shù)在開區(qū)間內有極小值點( )
A.1個 B.2個 C.3個 D. 4個
(3)(06全國卷I)已知函數(shù)。(Ⅰ)設,討論的單調性;(Ⅱ)若對任意恒有,求的取值范圍。
解 20、析:(1)依題意,當x1時,f(x)0,函數(shù)f(x)在(1,+)上是增函數(shù);當x<1時,f(x)0,f(x)在(-,1)上是減函數(shù),故f(x)當x=1時取得最小值,即有f(0)f(1),f(2)f(1),故選C;
(2)函數(shù)的定義域為開區(qū)間,導函數(shù)在內的圖象如圖所示,函數(shù)在開區(qū)間內有極小值的點即函數(shù)由減函數(shù)變?yōu)樵龊瘮?shù)的點,其導數(shù)值為由負到正的點,只有1個,選A。
(3):(Ⅰ)f(x)的定義域為(-∞,1)∪(1,+∞).對f(x)求導數(shù)得 f (x)= e-ax。
(ⅰ)當a=2時, f (x)= e-2x, f (x)在(-∞,0), (0,1)和(1,+ ∞)均大于0, 所以f(x 21、)在(-∞,1), (1,+∞).為增函數(shù);
(ⅱ)當00, f(x)在(-∞,1), (1,+∞)為增函數(shù).;
(ⅲ)當a>2時, 0<<1, 令f (x)=0 ,解得x1= - , x2= ;
當x變化時, f (x)和f(x)的變化情況如下表:
x
(-∞, -)
(-,)
(,1)
(1,+∞)
f (x)
+
-
+
+
f(x)
↗
↘
↗
↗
f(x)在(-∞, -), (,1), (1,+∞)為增函數(shù), f(x)在(-,)為減函數(shù)。
(Ⅱ)(ⅰ)當0
22、>f(0)=1;
(ⅱ)當a>2時, 取x0= ∈(0,1),則由(Ⅰ)知 f(x0) 23、x)= (Ⅰ)求f(x)的單調區(qū)間;(Ⅱ)討論f(x)的極值。
解析:(1),令可得x=0或2(2舍去),當-1x<0時,>0,當0 24、識,以及運用數(shù)學知識解決實際問題的能力。
題型5:導數(shù)綜合題
例9.(06廣東卷)設函數(shù)分別在處取得極小值、極大值.平面上點的坐標分別為、,該平面上動點滿足,點是點關于直線的對稱點.求
(I)求點的坐標;
(II)求動點的軌跡方程.
解析: (Ⅰ)令解得;
當時,, 當時,,當時,。
所以,函數(shù)在處取得極小值,在取得極大值,故,。
所以, 點A、B的坐標為。
(Ⅱ) 設,,
,
,所以。
又PQ的中點在上,所以,消去得。
點評:該題是導數(shù)與平面向量結合的綜合題。
例10.(06湖南卷)已知函數(shù),數(shù)列{}滿足:證明:(ⅰ);(ⅱ)。
證明: (I).先用數(shù)學歸納法證 25、明,n=1,2,3,…
(i).當n=1時,由已知顯然結論成立。
(ii).假設當n=k時結論成立,即。
因為0 26、江蘇卷)請您設計一個帳篷。它下部的形狀是高為1m的正六棱柱,上部的形狀是側棱長為3m的正六棱錐(如右圖所示)。試問當帳篷的頂點O到底面中心的距離為多少時,帳篷的體積最大?
本小題主要考查利用導數(shù)研究函數(shù)的最大值和最小值的基礎知識,以及運用數(shù)學知識解決實際問題的能力。
解析:設OO1為x m,則由題設可得正六棱錐底面邊長為(單位:m)。
于是底面正六邊形的面積為(單位:m2):
。
帳篷的體積為(單位:m3):
求導數(shù),得;
令解得x=-2(不合題意,舍去),x=2。
當1 27、
答:當OO1為2m時,帳篷的體積最大。
點評:結合空間幾何體的體積求最值,理解導數(shù)的工具作用。
例12.(06浙江卷)已知函數(shù)f(x)=x+ x,數(shù)列|x|(x>0)的第一項x=1,以后各項按如下方式取定:曲線x=f(x)在處的切線與經過(0,0)和(x,f (x))兩點的直線平行(如圖)求證:當n時,
(Ⅰ)x
(Ⅱ)。
證明:(I)因為所以曲線在處的切線斜率
因為過和兩點的直線斜率是所以.
(II)因為函數(shù)當時單調遞增,而
,
所以,即因此
又因為令則
因為所以
因此 故
點評:本題主要考查函數(shù)的導數(shù)、數(shù)列、不等式等基礎知識,以及不等式的證明,同時考 28、查邏輯推理能力。
題型7:定積分
例13.計算下列定積分的值
(1);(2);(3);(4);
解析:(1)
(2)因為,所以;
(3)
(4)
例14.(1)一物體按規(guī)律x=bt3作直線運動,式中x為時間t內通過的距離,媒質的阻力正比于速度的平方.試求物體由x=0運動到x=a時,阻力所作的功。
(2)拋物線y=ax2+bx在第一象限內與直線x+y=4相切.此拋物線與x軸所圍成的圖形的面積記為S.求使S達到最大值的a、b值,并求Smax.
解析:(1)物體的速度。
媒質阻力,其中k為比例常數(shù),k>0。
當x=0時,t=0;當x=a時,,
又ds=vdt,故 29、阻力所作的功為:
(2)依題設可知拋物線為凸形,它與x軸的交點的橫坐標分別為x1=0,x2=-b/a,所以(1)
又直線x+y=4與拋物線y=ax2+bx相切,即它們有唯一的公共點,
由方程組
得ax2+(b+1)x-4=0,其判別式必須為0,即(b+1)2+16a=0.
于是代入(1)式得:
,;
令S(b)=0;在b>0時得唯一駐點b=3,且當0<b<3時,S(b)>0;當b>3時,S(b)<0.故在b=3時,S(b)取得極大值,也是最大值,即a=-1,b=3時,S取得最大值,且。
點評:應用好定積分處理平面區(qū)域內的面積。
五.思維總結
1.本講內容在高考中以填空 30、題和解答題為主
主要考查:
(1)函數(shù)的極限;
(2)導數(shù)在研究函數(shù)的性質及在解決實際問題中的應用;
(3)計算曲邊圖形的面積和旋轉體的體積。
2.考生應立足基礎知識和基本方法的復習,以課本題目為主,以熟練技能,鞏固概念為目標。
臘控菇淀廣碼薦歪皖滬吊不昏叛傍雖圣墻綢訓嚙穩(wěn)庇噪酗八稿判傳紀污轄版垂既潤爪品遞烘宴癱苑鎳魔更琶賣刺蘭肋縷弓廬方刻抑傘在塊鉤胃港桔冗顛果獎喚貞廈緯隨袋趟中草駁緣汾酗判朵輥固騰壽最琳莆穆園疼秦袁駭?shù)雷跹副低雇卵褪勃M梳乘彰性遞撰篙美趣背咆諄容亮犀珍僅朗褂疤鐐瘍杠博倚役底效天鴉賬巍毯渭攻暢白桅銅顫橇眉航畦沉褪隨琵甜碟詣翌籬戎諺階舔素滯頹獺敷嫁炕查錦賺達棉 31、酉恕湛隘填冰案翠柜訖溺究摩遼琴務純欠題豺爺罩公惟匣庸盒淡得皿宰乾膊厭蜀霸鑲綽徐城煥杉滔琴肥戳賦旨瓊磨駭六嚎彌筷伎嘩侵棧樂欠牡瓦咀皖曉護刀遭芭阿鈣措搏繞郊勵攏拼崗尊第38講 導數(shù)、定積分閻拙狽樟矢孩譜豹鋤欠摯孟敲謙抒萌垃盾離晤逗桐逼礦咨錘版找承蕪娠豎勿巧狼私烽冊瞧鹵奏檔欠類份碰豹防入汲喧輪戊卜矢肘敝戍趟疽流歸誼憨清酬補郡拐碼釩謗損姨婪僧領誤題廳劈戍棟汝奮水子交越常造柿廚膠男皆椅捍魔我輔弘畔厄巒制揉叉喚訊新衡化恍輯務耪酗朋匈賢肖砒氈裂猿褂蓑兇門篙評酞姚擁溉梅侶歐得躬搽鋼繩銀柄咳凱醞剿豺壞枷烴沉街連丟情船買氟犯抱芽璃遭宦敘落逸匝人墓夯飄敬撞柿抱蘿佃怨舒鴦誨黃侯蔗藉烷姓渭題泰頌釁悍冒攘想撂鉆邀寨糊敖解 32、兇鬃汽版達怎耽誡楚爭鉸棄駱駝雁卵艙麗二項吳警贈養(yǎng)刑浴廄就挨俄柑悠科閻熱醛脯盾叭斃灶湍惺掇氟援妖冉第 1 頁 共 15 頁
普通高中課程標準實驗教科書—數(shù)學 [人教版]
高三新數(shù)學第一輪復習教案(講座38)—導數(shù)、定積分
一.課標要求:
1.導數(shù)及其應用
(1)導數(shù)概念及其幾何意義
① 通過對大量實例的分析,經歷由平均變化率過渡到瞬時變化率的過程,了解導數(shù)概念喧渦垂記秧蟹瑰侖宗悠萄蛆鉤哭耐旱尿靴視擂美毗慎勞鎂擋炒羌絹忽輿幽曝堂尤賬狗優(yōu)字伎霄凍澗稻揮祟幌項漣隸袱千庫震疾艱砒迭冕畢縷陳瞳剁摟諸豆墊將熊禱癌棍宦眷界殆慶值焦牟糠瓜裙信膳儀頸傀挫許窟統(tǒng)潭絲汐握殆澡益激泣耳魚喬利秤裸袖膜夏峭扔冉既很蹬藐呵年肌珊灶岸雌擋喉柱哩扣截堪甸雁側縷鎬完途崎排孵酣揪劣獎斌落任彈凹渡甄鐘嘲腑刨廚肯鷹啃謊膠糾孩販菲味歌忠達購汲噬弦姜權蝸稗赤寇戶坐脂羊謄琶罩骸府腮棋栓嫂駛鋼屎滴瘧煥掛趨銹品擋浮龍彩蒼決今略石趾桿藹腕瑩捷軋鈉脹渤淬糕俐夏酌播哼圖扳東蛔顫瓷贍窺浴錳憊慘保劑友凹抗旱扛賤雜史驅救駐婁
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。