新編高考數(shù)學(xué)復(fù)習(xí) 專題5.3 專題突破 高考中的概率與統(tǒng)計問題全國高考數(shù)學(xué)考前復(fù)習(xí)大串講

上傳人:痛*** 文檔編號:61693733 上傳時間:2022-03-12 格式:DOC 頁數(shù):7 大?。?12.54KB
收藏 版權(quán)申訴 舉報 下載
新編高考數(shù)學(xué)復(fù)習(xí) 專題5.3 專題突破 高考中的概率與統(tǒng)計問題全國高考數(shù)學(xué)考前復(fù)習(xí)大串講_第1頁
第1頁 / 共7頁
新編高考數(shù)學(xué)復(fù)習(xí) 專題5.3 專題突破 高考中的概率與統(tǒng)計問題全國高考數(shù)學(xué)考前復(fù)習(xí)大串講_第2頁
第2頁 / 共7頁
新編高考數(shù)學(xué)復(fù)習(xí) 專題5.3 專題突破 高考中的概率與統(tǒng)計問題全國高考數(shù)學(xué)考前復(fù)習(xí)大串講_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《新編高考數(shù)學(xué)復(fù)習(xí) 專題5.3 專題突破 高考中的概率與統(tǒng)計問題全國高考數(shù)學(xué)考前復(fù)習(xí)大串講》由會員分享,可在線閱讀,更多相關(guān)《新編高考數(shù)學(xué)復(fù)習(xí) 專題5.3 專題突破 高考中的概率與統(tǒng)計問題全國高考數(shù)學(xué)考前復(fù)習(xí)大串講(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 題型一 古典概型與幾何概型 例1 (1)(20xx·陜西變式)設(shè)復(fù)數(shù)z=(x-1)+yi(x,y∈R),若|z|≤1,則y≥x的概率為________. 【答案】?。? 【解析】 由|z|≤1可得(x-1)2+y2≤1,表示以(1,0)為圓心,半徑為1的圓及其內(nèi)部,滿足y≥x的部分為如圖陰影所示,由幾何概型概率公式可得所求概率為: P===-. (2)有9張卡片分別寫著數(shù)字1,2,3,4,5,6,7,8,9,甲、乙二人依次從中抽取一張卡片(不放回),試求: ①甲抽到寫有奇數(shù)數(shù)字卡片,且乙抽到寫有偶數(shù)數(shù)字卡片的概率; ②甲、乙二人至少抽到一張寫有奇數(shù)數(shù)字卡片

2、的概率. 【解析】 【思維升華】幾何概型與古典概型的本質(zhì)區(qū)別在于試驗結(jié)果的無限性,幾何概型經(jīng)常涉及的幾何度量有長度、面積、體積等,解決幾何概型的關(guān)鍵是找準(zhǔn)幾何測度;古典概型是命題的重點,對于較復(fù)雜的基本事件空間,列舉時要按照一定的規(guī)律進(jìn)行,做到不重不漏. 【跟蹤訓(xùn)練1】 (1)為了豐富學(xué)生的課余生活,促進(jìn)校園文化建設(shè),我校高二年級通過預(yù)賽選出了6個班(含甲、乙)進(jìn)行經(jīng)典美文誦讀比賽決賽.決賽通過隨機(jī)抽簽方式?jīng)Q定出場順序.求: ①甲、乙兩班恰好在前兩位出場的概率; ②決賽中甲、乙兩班之間的班級數(shù)記為X,求X的概率分布和均值. 【解析】 隨機(jī)變量X的概率分布為 X 0

3、1 2 3 4 P 因此,E(X)=0×+1×+2×+3×+4×=. (2)已知關(guān)于x的二次函數(shù)f(x)=ax2-4bx+1.設(shè)點(a,b)是區(qū)域內(nèi)的一點,求函數(shù)y=f(x)在區(qū)間1,+∞)上是增函數(shù)的概率. 解 ∵函數(shù)f(x)=ax2-4bx+1的圖象的對稱軸為直線x=, 要使f(x)=ax2-4bx+1在區(qū)間1,+∞)上為增函數(shù), 當(dāng)且僅當(dāng)a>0且≤1,即2b≤a. 依條件可知事件的全部結(jié)果所構(gòu)成的區(qū)域為 ,構(gòu)成所求事件的區(qū)域為三角形部分(圖略). 所求概率區(qū)間應(yīng)滿足2b≤a. 由得交點坐標(biāo)為(,), 故所求事件的概率為P==. 題型二 求

4、離散型隨機(jī)變量的均值與方差 例2 (20xx·四川)某市A,B兩所中學(xué)的學(xué)生組隊參加辯論賽,A中學(xué)推薦了3名男生、2名女生,B中學(xué)推薦了3名男生、4名女生,兩校所推薦的學(xué)生一起參加集訓(xùn).由于集訓(xùn)后隊員水平相當(dāng),從參加集訓(xùn)的男生中隨機(jī)抽取3人、女生中隨機(jī)抽取3人組成代表隊. (1)求A中學(xué)至少有1名學(xué)生入選代表隊的概率; (2)某場比賽前,從代表隊的6名隊員中隨機(jī)抽取4人參賽,設(shè)X表示參賽的男生人數(shù),求X的概率分布和均值. 【解析】 (2)根據(jù)題意,X的可能取值為1,2,3, P(X=1)==, P(X=2)==, P(X=3)==, 所以X的概率分布為 X 1 2

5、 3 P 因此,X的均值為 E(X)=1×+2×+3×=2. 【思維升華】離散型隨機(jī)變量的均值和方差的求解,一般分兩步:一是定型,即先判斷隨機(jī)變量的分布是特殊類型,還是一般類型,如兩點分布、二項分布、超幾何分布等屬于特殊類型;二是定性,對于特殊類型的均值和方差可以直接代入相應(yīng)公式求解,而對于一般類型的隨機(jī)變量,應(yīng)先求其概率分布然后代入相應(yīng)公式計算,注意離散型隨機(jī)變量的取值與概率間的對應(yīng). 【跟蹤訓(xùn)練2】 受轎車在保修期內(nèi)維修費等因素的影響,企業(yè)生產(chǎn)每輛轎車的利潤與該轎車首次出現(xiàn)故障的時間有關(guān).某轎車制造廠生產(chǎn)甲、乙兩種品牌轎車,保修期均為2年.現(xiàn)從該廠已售出的兩種品牌轎

6、車中各隨機(jī)抽取50輛,統(tǒng)計數(shù)據(jù)如下: 品牌 甲 乙 首次出現(xiàn)故障時間x (年) 02 02 轎車數(shù)量(輛) 2 3 45 5 45 每輛利潤(萬元) 1 2 3 1.8 2.9 將頻率視為概率,解答下列問題: (1)從該廠生產(chǎn)的甲品牌轎車中隨機(jī)抽取一輛,求其首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率; (2)若該廠生產(chǎn)的轎車均能售出,記生產(chǎn)一輛甲品牌轎車的利潤為X1,生產(chǎn)一輛乙品牌轎車的利潤為X2,分別求X1,X2的概率分布; (3)該廠預(yù)計今后這兩種品牌轎車銷量相當(dāng),由于資金限制,只能生產(chǎn)其中一種品牌的轎車.若從

7、經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)生產(chǎn)哪種品牌的轎車?說明理由. 【解析】 (1)設(shè)“甲品牌轎車首次出現(xiàn)故障發(fā)生在保修期內(nèi)”為事件A,則P(A)==. (2)依題意得,X1的概率分布為 X1 1 2 3 P X2的概率分布為 X2 1.8 2.9 P (3)由(2)得E(X1)=1×+2×+3× ==2.86(萬元), E(X2)=1.8×+2.9×=2.79(萬元). 因為E(X1)>E(X2),所以應(yīng)生產(chǎn)甲品牌轎車. 題型三 概率與統(tǒng)計的綜合應(yīng)用 例3 經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出1 t該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,

8、每1 t虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直方圖,如圖所示.經(jīng)銷商為下一個銷售季度購進(jìn)了130 t該農(nóng)產(chǎn)品.以X(單位: t,100≤X≤150)表示下一個銷售季度內(nèi)的市場需求量,T(單位:元)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤. (1)將T表示為X的函數(shù); (2)根據(jù)直方圖估計利潤T不少于57 000元的概率; (3)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值,需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點值的概率(例如:若需求量X∈100,110),則取X=105,且X=105的概率等于需求量落入100,110)的頻率),求T的均值.

9、 (2)由(1)知利潤T不少于57 000元當(dāng)且僅當(dāng)120≤X≤150. 由直方圖知需求量X∈120,150]的頻率為0.7,所以下一個銷售季度內(nèi)的利潤T不少于57 000元的概率的估計值為0.7. (3)依題意可得T的概率分布為 T 45 000 53 000 61 000 65 000 P 0.1 0.2 0.3 0.4 所以E(T)=45 000×0.1+53 000×0.2+61 000×0.3+65 000×0.4=59 400. 【思維升華】概率與統(tǒng)計作為考查考生應(yīng)用意識的重要載體,已成為近幾年高考的一大亮點和熱點.它與其他知識融合、滲透,情境新

10、穎,充分體現(xiàn)了概率與統(tǒng)計的工具性和交匯性. 【跟蹤訓(xùn)練3】 如圖莖葉圖記錄了甲、乙兩組各四名同學(xué)的植樹棵數(shù).乙組記錄中有一個數(shù)據(jù)模糊,無法確認(rèn),在圖中以X表示. (1)如果X=8,求乙組同學(xué)植樹棵數(shù)的平均數(shù)和方差; (2)如果X=9,分別從甲、乙兩組中隨機(jī)選取一名同學(xué),求這兩名同學(xué)的植樹總棵樹Y的概率分布和均值. (注:方差s2=(x1-)2+(x2-)2+…+(xn-)2],其中為x1,x2,…,xn的平均數(shù)) 同理可得P(Y=18)=,P(Y=19)=,P(Y=20)=,P(Y=21)=. 所以隨機(jī)變量Y的概率分布為 Y 17 18 19 20 21 P E(Y)=17×+18×+19×+20×+21×=19. 歡迎訪問“高中試卷網(wǎng)”——http://sj.fjjy.org

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!