新版金版教程高考數(shù)學(xué)文二輪復(fù)習(xí)講義:第二編 專題整合突破 專題二 函數(shù)與導(dǎo)數(shù) 第三講 導(dǎo)數(shù)的簡單應(yīng)用 Word版含解析

收藏 版權(quán)申訴 舉報(bào) 下載
新版金版教程高考數(shù)學(xué)文二輪復(fù)習(xí)講義:第二編 專題整合突破 專題二 函數(shù)與導(dǎo)數(shù) 第三講 導(dǎo)數(shù)的簡單應(yīng)用 Word版含解析_第1頁
第1頁 / 共23頁
新版金版教程高考數(shù)學(xué)文二輪復(fù)習(xí)講義:第二編 專題整合突破 專題二 函數(shù)與導(dǎo)數(shù) 第三講 導(dǎo)數(shù)的簡單應(yīng)用 Word版含解析_第2頁
第2頁 / 共23頁
新版金版教程高考數(shù)學(xué)文二輪復(fù)習(xí)講義:第二編 專題整合突破 專題二 函數(shù)與導(dǎo)數(shù) 第三講 導(dǎo)數(shù)的簡單應(yīng)用 Word版含解析_第3頁
第3頁 / 共23頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《新版金版教程高考數(shù)學(xué)文二輪復(fù)習(xí)講義:第二編 專題整合突破 專題二 函數(shù)與導(dǎo)數(shù) 第三講 導(dǎo)數(shù)的簡單應(yīng)用 Word版含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《新版金版教程高考數(shù)學(xué)文二輪復(fù)習(xí)講義:第二編 專題整合突破 專題二 函數(shù)與導(dǎo)數(shù) 第三講 導(dǎo)數(shù)的簡單應(yīng)用 Word版含解析(23頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、 1

2、 1 第三講 導(dǎo)數(shù)的簡單應(yīng)用 必記公式] 1.基本初等函數(shù)的八個(gè)導(dǎo)數(shù)公式 原函數(shù) 導(dǎo)函數(shù) f(x)=C(C為常數(shù)) f′(x)=0 f(x)=xα(α∈R) f′(x)=αxα-1 f(x)=sinx f′(x)=cosx f(x)=cosx f′(x)=-sinx f(x)=ax(a>0,且a≠1) f′(x)=axln_a f(x)=ex

3、 f′(x)=ex f(x)=logax(a>0,且a≠1) f′(x)=logae= f(x)=ln x f′(x)=   2.導(dǎo)數(shù)四則運(yùn)算法則 (1)f(x)±g(x)]′=f′(x)±g′(x); (2)f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x); (3)′=(g(x)≠0). 重要概念] 1.切線的斜率 函數(shù)f(x)在x0處的導(dǎo)數(shù)是曲線f(x)在點(diǎn)P(x0,f(x0))處的切線的斜率,因此曲線f(x)在點(diǎn)P處的切線的斜率k=f′(x0),相應(yīng)的切線方程為y-f(x0)=f′(x0)(x-x0). 2.函數(shù)的單調(diào)性 在某個(gè)區(qū)間(a,b)內(nèi),

4、如果f′(x)>0(f′(x)<0),那么函數(shù)y=f(x)在這個(gè)區(qū)間內(nèi)單調(diào)遞增(單調(diào)遞減). 3.函數(shù)的極值 設(shè)函數(shù)f(x)在點(diǎn)x0附近有定義,如果對(duì)x0附近所有的點(diǎn)x,都有f(x)f(x0),那么f(x0)是函數(shù)的一個(gè)極小值,記作y極小值=f(x0).極大值與極小值統(tǒng)稱為極值. 4.函數(shù)的最值 將函數(shù)y=f(x)在a,b]內(nèi)的各極值與端點(diǎn)處的函數(shù)值f(a),f(b)比較,其中最大的一個(gè)是最大值,最小的一個(gè)是最小值. 失分警示] 1.判斷極值的條件掌握不清:利用導(dǎo)數(shù)判斷函

5、數(shù)的極值時(shí),忽視“導(dǎo)數(shù)等于零,并且兩側(cè)導(dǎo)數(shù)的符號(hào)相反”這兩個(gè)條件同時(shí)成立. 2.混淆在點(diǎn)P處的切線和過點(diǎn)P的切線:前者點(diǎn)P為切點(diǎn),后者點(diǎn)P不一定為切點(diǎn),求解時(shí)應(yīng)先設(shè)出切點(diǎn)坐標(biāo). 3.關(guān)注函數(shù)的定義域:求函數(shù)的單調(diào)區(qū)間及極(最)值應(yīng)先求定義域. 考點(diǎn) 導(dǎo)數(shù)的幾何意義   典例示法 典例1  (1)20xx·山東高考]若函數(shù)y=f(x)的圖象上存在兩點(diǎn),使得函數(shù)的圖象在這兩點(diǎn)處的切線互相垂直,則稱y=f(x)具有T性質(zhì).下列函數(shù)中具有T性質(zhì)的是(  ) A.y=sinx B.y=ln x C.y=ex D.y=x3 解析] 設(shè)函數(shù)y=f(x)圖象上兩點(diǎn)的橫坐標(biāo)為x1,

6、x2.由題意知只需函數(shù)y=f(x)滿足f′(x1)·f′(x2)=-1(x1≠x2)即可.y=f(x)=sinx的導(dǎo)函數(shù)為f′(x)=cosx,f′(0)·f′(π)=-1,故A滿足;y=f(x)=ln x的導(dǎo)函數(shù)為f′(x)=,f′(x1)·f′(x2)=>0,故B不滿足;y=f(x)=ex的導(dǎo)函數(shù)為f′(x)=ex,f′(x1)·f′(x2)=ex1+x2>0,故C不滿足;y=f(x)=x3的導(dǎo)函數(shù)為f′(x)=3x2,f′(x1)·f′(x2)=9xx≥0,故D不滿足.故選A. 答案] A (2)20xx·陜西高考]設(shè)曲線y=ex在點(diǎn)(0,1)處的切線與曲線y=(x>0)上點(diǎn)P處的切

7、線垂直,則P的坐標(biāo)為________. 解析] y′=ex,則y=ex在點(diǎn)(0,1)處的切線的斜率k切=1,又曲線y=(x>0)上點(diǎn)P處的切線與y=ex在點(diǎn)(0,1)處的切線垂直,所以y=(x>0)在點(diǎn)P處的切線的斜率為-1,設(shè)P(a,b),則曲線y=(x>0)上點(diǎn)P處的切線的斜率為y′|x=a=-a-2=-1,可得a=1,又P(a,b)在y=上,所以b=1,故P(1,1). 答案] (1,1) 1.求曲線y=f(x)的切線方程的三種類型及方法 (1)已知切點(diǎn)P(x0,y0),求y=f(x)過點(diǎn)P的切線方程: 求出切線的斜率f′(x0),由點(diǎn)斜式寫出方程. (2)已知切線的斜率

8、為k,求y=f(x)的切線方程: 設(shè)切點(diǎn)P(x0,y0),通過方程k=f′(x0)解得x0,再由點(diǎn)斜式寫出方程. (3)已知切線上一點(diǎn)(非切點(diǎn)),求y=f(x)的切線方程: 設(shè)切點(diǎn)P(x0,y0),利用導(dǎo)數(shù)求得切線斜率f′(x0),然后由斜率公式求得切線斜率,列方程(組)解得x0,再由點(diǎn)斜式或兩點(diǎn)式寫出方程. 2.利用切線(或方程)與其他曲線的關(guān)系求參數(shù) 已知過某點(diǎn)切線方程(斜率)或其與某線平行、垂直,利用導(dǎo)數(shù)的幾何意義、切點(diǎn)坐標(biāo)、切線斜率之間的關(guān)系構(gòu)建方程(組)或函數(shù)求解. 提醒:求曲線的切線方程時(shí),務(wù)必分清在點(diǎn)P處的切線還是過點(diǎn)P的切線,前者點(diǎn)P為切點(diǎn),后者點(diǎn)P不一定為切點(diǎn),求

9、解時(shí)應(yīng)先求出切點(diǎn)坐標(biāo). 針對(duì)訓(xùn)練 1.20xx·重慶巴蜀中學(xué)模擬]已知曲線y=在點(diǎn)P(2,4)處的切線與直線l平行且距離為2,則直線l的方程為(  ) A.2x+y+2=0 B.2x+y+2=0或2x+y-18=0 C.2x-y-18=0 D.2x-y+2=0或2x-y-18=0 答案 B 解析 y′==-,y′|x=2=-=-2,因此k1=-2,設(shè)直線l方程為y=-2x+b,即2x+y-b=0,由題意得=2,解得b=18或b=-2,所以直線l的方程為2x+y-18=0或2x+y+2=0.故選B. 2.20xx·江蘇高考]在平面直角坐標(biāo)系xOy中,若曲線y=ax2+(a,

10、b為常數(shù))過點(diǎn)P(2,-5),且該曲線在點(diǎn)P處的切線與直線7x+2y+3=0平行,則a+b的值是________. 答案?。? 解析 ∵y=ax2+,∴y′=2ax-, 由題意可得 解得∴a+b=-3. 考點(diǎn) 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性   典例示法 題型1 利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(單調(diào)區(qū)間) 典例2  20xx·重慶高考]已知函數(shù)f(x)=ax3+x2(a∈R)在x=-處取得極值. (1)確定a的值; (2)若g(x)=f(x)ex,討論g(x)的單調(diào)性. 解] (1)對(duì)f(x)求導(dǎo)得f′(x)=3ax2+2x, 因?yàn)閒(x)在x=-處取得極值,所以f′=0, 即3

11、a·+2·=-=0,解得a=. (2)由(1)得g(x)=ex, 故g′(x)=ex+ex =ex=x(x+1)(x+4)ex. 令g′(x)=0,解得x=0,x=-1或x=-4. 當(dāng)x<-4時(shí),g′(x)<0,故g(x)為減函數(shù); 當(dāng)-40,故g(x)為增函數(shù); 當(dāng)-10時(shí),g′(x)>0,故g(x)為增函數(shù). 綜上知g(x)在(-∞,-4)和(-1,0)內(nèi)為減函數(shù),在(-4,-1)和(0,+∞)內(nèi)為增函數(shù). 題型2 根據(jù)函數(shù)的單調(diào)性求參數(shù)的范圍 典例3  20xx·西安質(zhì)檢]已知函數(shù)f(

12、x)=mx2-x+ln x. (1)若在函數(shù)f(x)的定義域內(nèi)存在區(qū)間D,使得該函數(shù)在區(qū)間D上為減函數(shù),求實(shí)數(shù)m的取值范圍; (2)當(dāng)00時(shí),由于函數(shù)y=2mx2-x+1的圖象的對(duì)稱軸x=>0,故需且只需Δ>0,即1-8m>0,故0

13、=2mx-m-1. 從而方程mx2-x+ln x=2mx-m-1在(0,+∞)上有且只有一解. 設(shè)g(x)=mx2-x+ln x-(2mx-m-1),則g(x)在(0,+∞)上有且只有一個(gè)零點(diǎn). 又g(1)=0,故函數(shù)g(x)有零點(diǎn)x=1. 則g′(x)=2mx-1+-2m== . 當(dāng)m=時(shí),g′(x)≥0,又g(x)不是常數(shù)函數(shù),故g(x)在(0,+∞)上單調(diào)遞增. ∴函數(shù)g(x)有且只有一個(gè)零點(diǎn)x=1,滿足題意. 當(dāng)01,由g′(x)>0,得0; 由g′(x)<0,得1

14、時(shí),g′(x)、g(x)的變化情況如下表: x (0,1) 1 g′(x) + 0 - 0 + g(x)  極大值  極小值    根據(jù)上表知g<0. 又g(x)=mx+m+ln x+1. ∴g>0,故在上,函數(shù)g(x)又有一個(gè)零點(diǎn),不符合題意. 綜上所述,m=. 1.導(dǎo)數(shù)與單調(diào)性之間的關(guān)系 (1)導(dǎo)數(shù)大(小)于0的區(qū)間是函數(shù)的單調(diào)遞增(減)區(qū)間. (2)函數(shù)f(x)在D上單調(diào)遞增??x∈D,f′(x)≥0且f′(x)在區(qū)間D的任何子區(qū)間內(nèi)都不恒為零; 函數(shù)f(x)在D上單調(diào)遞減??x∈D,f′(x)≤0且f′(x)在

15、區(qū)間D的任何子區(qū)間內(nèi)都不恒為零. 2.根據(jù)函數(shù)的單調(diào)性求參數(shù)取值范圍的思路 (1)求f′(x). (2)將單調(diào)性轉(zhuǎn)化為導(dǎo)數(shù)f′(x)在該區(qū)間上滿足的不等式恒成立問題求解. 考點(diǎn) 利用導(dǎo)數(shù)研究函數(shù)的極值與最值   典例示法 題型1 求函數(shù)的極值(最值) 典例4  20xx·合肥質(zhì)檢]已知函數(shù)f(x)=e1-x(2ax-a2)(其中a≠0). (1)若函數(shù)f(x)在(2,+∞)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍; (2)設(shè)函數(shù)f(x)的最大值為g(a),當(dāng)a>0時(shí),求g(a)的最大值. 解] (1)由f(x)=e1-x(2ax-a2), 得f′(x)=

16、(e1-x)′(2ax-a2)+2ae1-x=e·′·(2ax-a2)+2ae1-x=-e1-x(2ax-a2)+2ae1-x=-e1-x·(2ax-a2-2a)=0,又a≠0,故x=1+, 當(dāng)a>0時(shí),f(x)在上為增函數(shù),在上為減函數(shù),∴1+≤2,即a≤2, ∴00時(shí),f(x)max=f=2a·e 即g(a)=2ae. 則g′(a)=(2-a)e=0,得a=2, ∴g(a)在(0,2)上為增函數(shù),在(2,+∞)上為減函數(shù), ∴g(a)max=g(2)=. 題型2 知極值的個(gè)數(shù)求參數(shù)范圍

17、 典例5  20xx·沈陽質(zhì)檢]已知函數(shù)f(x)=xln x-x2-x+a(a∈R)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn). (1)求a的取值范圍; (2)記兩個(gè)極值點(diǎn)為x1,x2,且x10,若不等式e1+λ

18、需00, 當(dāng)x>e時(shí),g′(x)<0, 所以g(x)在(0,e)上單調(diào)遞增,在(e,+∞)上單調(diào)遞減.從而g(x)極大值=g(e)=. 又g(x)有且只有一個(gè)零點(diǎn)是1,且在x→0時(shí),g(x)→-∞,在x→+∞時(shí),g(x)→0, 所以g(x)的草圖如圖所示, 可見,要想函數(shù)g(x)=與函數(shù)y=a的圖象在(0,+∞)上有兩個(gè)

19、不同交點(diǎn),只需00), 若a≤0,可見g′(x)>0在(0,+∞)上恒成立,所以g(x)在(0,+∞)上單調(diào)遞增,此時(shí)g(x)不可能有兩個(gè)不同零點(diǎn). 若a>0,當(dāng)00,當(dāng)x>時(shí),g′(x)<0,所以g(x)在上單調(diào)遞增,在上單調(diào)遞減,從而g(x)極大值=g=ln -1. 又因?yàn)樵趚→0時(shí),g(x)→-∞,在x→+∞時(shí),g(x)→-∞,于是只需: g(x)極大值>0,即ln-1>0,所以0

20、x等價(jià)于1+λ. 又由ln x1=ax1,ln x2=ax2作差得,ln =a(x1-x2),即a=. 所以原式等價(jià)于>, 因?yàn)?

21、)時(shí),h′(t)>0,所以h(t)在(0,1)上單調(diào)遞增,又h(1)=0, h(t)<0在(0,1)上恒成立,符合題意. 當(dāng)λ2<1時(shí),可見t∈(0,λ2)時(shí),h′(t)>0,t∈(λ2,1)時(shí),h′(t)<0, 所以h(t)在(0,λ2)上單調(diào)遞增,在(λ2,1)上單調(diào)遞減,又h(1)=0, 所以h(t)在(0,1)上不能恒小于0,不符合題意,舍去. 綜上所述,若不等式e1+λ0,所以λ≥1. 利用導(dǎo)數(shù)研究函數(shù)極值與最值的步驟 (1)利用導(dǎo)數(shù)求函數(shù)極值的一般思路和步驟 ①求定義域; ②求導(dǎo)數(shù)f′(x); ③解方程f′(x)=0

22、,研究極值情況; ④確定f′(x0)=0時(shí)x0左右的符號(hào),定極值. (2)若已知函數(shù)極值的大小或存在情況,求參數(shù)的取值范圍,則轉(zhuǎn)化為已知方程f′(x)=0根的大小或存在情況來討論求解. (3)求函數(shù)y=f(x)在a,b]上最大值與最小值的步驟 ①求函數(shù)y=f(x)在(a,b)內(nèi)的極值; ②將函數(shù)y=f(x)的各極值與端點(diǎn)處的函數(shù)值f(a),f(b)比較,其中最大的一個(gè)是最大值,最小的一個(gè)是最小值. 提醒:(1)求函數(shù)極值時(shí),一定要注意分析導(dǎo)函數(shù)的零點(diǎn)是不是函數(shù)的極值點(diǎn); (2)求函數(shù)最值時(shí),務(wù)必將極值點(diǎn)與端點(diǎn)值比較得出最大(小)值; (3)對(duì)于含參數(shù)的函數(shù)解析式或區(qū)間求極值、最

23、值問題,務(wù)必要對(duì)參數(shù)分類討論. 全國卷高考真題調(diào)研] 1.20xx·全國卷Ⅱ]設(shè)函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(-1)=0,當(dāng)x>0時(shí),xf′(x)-f(x)<0,則使得f(x)>0成立的x的取值范圍是(  ) A.(-∞,-1)∪(0,1) B.(-1,0)∪(1,+∞) C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞) 答案 A 解析 令F(x)=,因?yàn)閒(x)為奇函數(shù),所以F(x)為偶函數(shù),由于F′(x)=,當(dāng)x>0時(shí),xf′(x)-f(x)<0,所以F(x)=在(0,+∞)上單調(diào)遞減,根據(jù)對(duì)稱性,F(xiàn)(x)=在(-∞,0)

24、上單調(diào)遞增,又f(-1)=0,f(1)=0,數(shù)形結(jié)合可知,使得f(x)>0成立的x的取值范圍是(-∞,-1)∪(0,1),故選A. 2.20xx·全國卷Ⅲ]已知f(x)為偶函數(shù),當(dāng)x≤0時(shí),f(x)=e-x-1-x,則曲線y=f(x)在點(diǎn)(1,2)處的切線方程是________. 答案 y=2x 解析 當(dāng)x>0時(shí),-x<0,f(-x)=ex-1+x,而f(-x)=f(x),所以f(x)=ex-1+x(x>0),點(diǎn)(1,2)在曲線y=f(x)上,易知f′(1)=2,故曲線y=f(x)在點(diǎn)(1,2)處的切線方程是y-2=f′(1)·(x-1),即y=2x. 其它省市高考題借鑒] 3.20

25、xx·四川高考]已知a為函數(shù)f(x)=x3-12x的極小值點(diǎn),則a=(  ) A.-4 B.-2 C.4 D.2 答案 D 解析 由題意可得f′(x)=3x2-12=3(x-2)(x+2), 令f′(x)=0,得x=-2或x=2, 則f′(x),f(x)隨x的變化情況如下表: x (-∞,-2) -2 (-2,2) 2 (2,+∞) f′(x) + 0 - 0 + f(x)  極大值  極小值  ∴函數(shù)f(x)在x=2處取得極小值,則a=2.故選D. 4.20xx·北京高考]設(shè)函數(shù)f(x)=xea-x+bx,曲線y=f(x)在點(diǎn)

26、(2,f(2))處的切線方程為y=(e-1)x+4. (1)求a,b的值; (2)求f(x)的單調(diào)區(qū)間. 解 (1)因?yàn)閒(x)=xea-x+bx,所以f′(x)=(1-x)·ea-x+b. 依題設(shè),即 解得a=2,b=e. (2)由(1)知f(x)=xe2-x+ex. 由f′(x)=e2-x(1-x+ex-1)及e2-x>0知,f′(x)與1-x+ex-1同號(hào). 令g(x)=1-x+ex-1,則g′(x)=-1+ex-1. 所以當(dāng)x∈(-∞,1)時(shí),g′(x)<0,g(x)在區(qū)間(-∞,1)上單調(diào)遞減; 當(dāng)x∈(1,+∞)時(shí),g′(x)>0,g(x)在區(qū)間(1,+∞)上單

27、調(diào)遞增. 故g(1)=1是g(x)在區(qū)間(-∞,+∞)上的最小值, 從而g(x)>0,x∈(-∞,+∞). 綜上可知,f′(x)>0,x∈(-∞,+∞). 故f(x)的單調(diào)遞增區(qū)間為(-∞,+∞). 一、選擇題 1.20xx·鄭州質(zhì)檢]函數(shù)f(x)=excosx的圖象在點(diǎn)(0,f(0))處的切線方程是(  ) A.x+y+1=0 B.x+y-1=0 C.x-y+1=0 D.x-y-1=0 答案 C 解析 依題意,f(0)=e0cos0=1,因?yàn)閒′(x)=excosx-exsinx,所以f′(0)=1,所以切線方程為y-1=x-0,即x-y+1=0,故選C.

28、2.20xx·山西忻州四校聯(lián)考]設(shè)函數(shù)f(x)=xsinx+cosx的圖象在點(diǎn)(t,f(t))處切線的斜率為k,則函數(shù)k=g(t)的部分圖象為(  ) 答案 B 解析 f′(x)=(xsinx+cosx)′=xcosx,則k=g(t)=t·cost,易知函數(shù)g(t)為奇函數(shù),其圖象關(guān)于原點(diǎn)對(duì)稱,排除A、C.當(dāng)00,所以排除D,故選B. 3.20xx·廣西質(zhì)檢]若函數(shù)f(x)=(x2-cx+5)ex在區(qū)間上單調(diào)遞增,則實(shí)數(shù)c的取值范圍是(  ) A.(-∞,2] B.(-∞,4] C.(-∞,8] D.-2,4] 答案 B 解析 f′(x)=x2+(

29、2-c)x-c+5]ex,因?yàn)楹瘮?shù)f(x)在區(qū)間上單調(diào)遞增,等價(jià)于x2+(2-c)x-c+5≥0對(duì)任意x∈恒成立,即(x+1)c≤x2+2x+5,c≤對(duì)任意x∈恒成立,∵x∈,∴=(x+1)+≥4,當(dāng)且僅當(dāng)x=1時(shí)等號(hào)成立,∴c≤4. 4.20xx·沈陽質(zhì)檢]已知函數(shù)y=x2的圖象在點(diǎn)(x0,x)處的切線為l,若l也與函數(shù)y=ln x,x∈(0,1)的圖象相切,則x0必滿足(  ) A.0

30、l也與函數(shù)y=ln x(x∈(0,1))的圖象相切,令切點(diǎn)坐標(biāo)為(x1,ln x1),y′=,所以l的方程為y=x+ln x1-1,這樣有所以1+ln 2x0=x,x0∈(1,+∞),令g(x)=x2-ln 2x-1,x∈(1,+∞),所以該函數(shù)的零點(diǎn)就是x0,又因?yàn)間′(x)=2x-=,所以g(x)在(1,+∞)上單調(diào)遞增,又g(1)=-ln 2 <0,g()=1-ln 2 <0,g()=2-ln 2>0,從而

31、x2,+∞)上是增函數(shù),則x2-x1≥ C.函數(shù)f(x)的圖象是中心對(duì)稱圖形 D.函數(shù)f(x)的圖象在點(diǎn)(x0,f(x0))(x0∈R)處的切線與f(x)的圖象必有兩個(gè)不同的公共點(diǎn) 答案 D 解析 對(duì)于選項(xiàng)A,f′(x)=3x2+2ax-1,方程3x2+2ax-1=0的根的判別式Δ=4a2+12>0恒成立,故f′(x)=0必有兩個(gè)不等實(shí)根,不妨設(shè)為x1,x2,且x10,得xx2,令f′(x)<0,得x1

32、時(shí),函數(shù)f(x)取得極小值,故A選項(xiàng)的結(jié)論正確;對(duì)于選項(xiàng)B,令f′(x)=3x2+2ax-1=0,由根與系數(shù)的關(guān)系可得x1+x2=-,x1x2=-,易知x1

33、,1]上的最大值為2,則a的取值范圍是(  ) A.2,10] B.-1,8] C.-2,2] D.0,9] 答案 B 解析 f′(x)=-3ax2+a-2.(1)當(dāng)a=0時(shí),f′(x)=-2<0,f(x)在-1,1]上為減函數(shù),所以f(x)max=f(-1)=2,符合題意.(2)當(dāng)02時(shí),由f′(x)=0,解得x=± .①當(dāng)- ≤-1,即 ≥1,即-1≤a<0時(shí),函數(shù)f(x)在-1,1]上單調(diào)遞減,所以此時(shí)函數(shù)在定義域內(nèi)的最大值為f(-1)=

34、2,滿足條件;②當(dāng)- >-1,即 <1,即a<-1或a>2時(shí),若a<-1,函數(shù)f(x)在與上單調(diào)遞增,在上單調(diào)遞減,所以此時(shí)函數(shù)在定義域內(nèi)的最大值為f(1)=-2或f,而f>f(-1)=2,不滿足條件,若a>2,函數(shù)f(x)在與上單調(diào)遞減,在上單調(diào)遞增,所以此時(shí)函數(shù)在定義域內(nèi)的最大值為f(-1)=2或f,則必有f≤2,即(a-2) -a3≤2,整理并因式分解得(a-8)(a+1)2≤0,所以由a>2可得2

35、切點(diǎn)為(x0,y0),則f′(x0)=-·e x0=-1,∴e x0=a,又-·e x0=-x0+1,∴x0=2,∴a=e2. 8.20xx·廣東肇慶模擬]已知函數(shù)f(x)=x3+ax2+3x-9,若x=-3是函數(shù)f(x)的一個(gè)極值點(diǎn),則實(shí)數(shù)a=________. 答案 5 解析 f′(x)=3x2+2ax+3,由題意知x=-3為方程3x2+2ax+3=0的根,所以3×(-3)2+2a×(-3)+3=0,解得a=5. 9.20xx·石家莊一模]設(shè)過曲線f(x)=-ex-x(e為自然對(duì)數(shù)的底數(shù))上任意一點(diǎn)處的切線為l1,總存在過曲線g(x)=ax+2cosx上一點(diǎn)處的切線l2,使得l1⊥

36、l2,則實(shí)數(shù)a的取值范圍為________. 答案?。?≤a≤2 解析 函數(shù)f(x)=-ex-x的導(dǎo)數(shù)為f′(x)=-ex-1,設(shè)曲線f(x)=-ex-x上的切點(diǎn)為(x1,f(x1)),則l1的斜率k1=-ex1-1.函數(shù)g(x)=ax+2cosx的導(dǎo)數(shù)為g′(x)=a-2sinx,設(shè)曲線g(x)=ax+2cosx上的切點(diǎn)為(x2,g(x2)),則l2的斜率k2=a-2sinx2.由題設(shè)可知k1·k2=-1,從而有(-ex1-1)(a-2sinx2)=-1,∴a-2sinx2=,對(duì)?x1,?x2使得等式成立,則有y1=的值域是y2=a-2sinx2值域的子集,即(0,1)?a-2,a+2]

37、,∴-1≤a≤2. 三、解答題 10.20xx·石景山區(qū)高三統(tǒng)測(cè)]已知函數(shù)f(x)=x-aln x,g(x)=-(a>0). (1)若a=1,求函數(shù)f(x)的極值; (2)設(shè)函數(shù)h(x)=f(x)-g(x),求函數(shù)h(x)的單調(diào)區(qū)間; (3)若存在x0∈1,e],使得f(x0)1時(shí),f′(x)>0,f(x)單調(diào)遞增; 所以當(dāng)x=1時(shí),函數(shù)f(x)取得極小值,極小

38、值為f(1)=1-ln 1=1; (2)h(x)=f(x)-g(x)=x-aln x+,其定義域?yàn)?0,+∞). 又h′(x)==. 由a>0可得1+a>0,在x∈(0,1+a)上h′(x)<0,在x∈(1+a,+∞)上h′(x)>0, 所以h(x)的遞減區(qū)間為(0,1+a);遞增區(qū)間為(1+a,+∞). (3)若在1,e]上存在一點(diǎn)x0,使得f(x0)

39、, 由h(e)=e+-a<0,可得a>. 因?yàn)?e-1,所以a>; ②當(dāng)1<1+a2,即h(1+a)>2不滿足題意,舍去. 綜上所述:a∈. 11.已知函數(shù)f(x)=ln x+ax-a2x2(a≥0). (1)若x=1是函數(shù)y=f(x)的極值點(diǎn),求a的值; (2)若f(x)<0在定義域內(nèi)恒成立,求實(shí)數(shù)a的

40、取值范圍. 解 (1)函數(shù)的定義域?yàn)?0,+∞), f′(x)=. 因?yàn)閤=1是函數(shù)y=f(x)的極值點(diǎn), 所以f′(1)=1+a-2a2=0, 解得a=-(舍去)或a=1. 經(jīng)檢驗(yàn),當(dāng)a=1時(shí),x=1是函數(shù)y=f(x)的極值點(diǎn),所以a=1. (2)當(dāng)a=0時(shí),f(x)=ln x,顯然在定義域內(nèi)不滿足f(x)<0; 當(dāng)a>0時(shí),令f′(x)==0,得 x1=-(舍去),x2=, 所以f′(x),f(x)的變化情況如下表: x f′(x) + 0 - f(x)  極大值  所以f(x)max=f=ln <0, 所以a>1. 綜上可得a的

41、取值范圍是(1,+∞). 12.20xx·廣西質(zhì)檢]已知函數(shù)f(x)=+aln x(a≠0,a∈R). (1)若a=1,求函數(shù)f(x)的極值和單調(diào)區(qū)間; (2)若在區(qū)間(0,e]上至少存在一點(diǎn)x0,使得f(x0)<0成立,求實(shí)數(shù)a的取值范圍. 解 (1)當(dāng)a=1時(shí),f′(x)=-+=, 令f′(x)=0,得x=1, 又f(x)的定義域?yàn)?0,+∞),由f′(x)<0得00得x>1, 所以當(dāng)x=1時(shí),f(x)有極小值1. f(x)的單調(diào)遞增區(qū)間為(1,+∞),單調(diào)遞減區(qū)間為(0,1). (2)f′(x)=-+=,且a≠0,令f′(x)=0,得到x=,

42、若在區(qū)間(0,e]上存在一點(diǎn)x0,使得f(x0)<0成立,即f(x)在區(qū)間(0,e]上的最小值小于0. 當(dāng)<0,即a<0時(shí),f′(x)<0在(0,e]上恒成立,即f(x)在區(qū)間(0,e]上單調(diào)遞減, 故f(x)在區(qū)間(0,e]上的最小值為f(e)=+aln e=+a, 由+a<0,得a<-,即a∈. 當(dāng)>0,即a>0時(shí), ①若e≤,則f′(x)≤0對(duì)x∈(0,e]成立,所以f(x)在區(qū)間(0,e]上單調(diào)遞減, 則f(x)在區(qū)間(0,e]上的最小值為f(e)=+aln e=+a>0, 顯然,f(x)在區(qū)間(0,e]上的最小值小于0不成立. ②若0<時(shí),則有 x f′(x) - 0 + f(x)  極小值  所以f(x)在區(qū)間(0,e]上的最小值為f=a+aln, 由f=a+aln=a(1-ln a)<0,得1-ln a<0,解得a>e, 即a∈(e,+∞). 綜上,由①②可知:a∈∪(e,+∞)符合題意.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!