新編高考數(shù)學(xué)理一輪資料包 第六章 三角函數(shù)

上傳人:無*** 文檔編號:63053942 上傳時間:2022-03-17 格式:DOC 頁數(shù):22 大?。?89.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
新編高考數(shù)學(xué)理一輪資料包 第六章 三角函數(shù)_第1頁
第1頁 / 共22頁
新編高考數(shù)學(xué)理一輪資料包 第六章 三角函數(shù)_第2頁
第2頁 / 共22頁
新編高考數(shù)學(xué)理一輪資料包 第六章 三角函數(shù)_第3頁
第3頁 / 共22頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《新編高考數(shù)學(xué)理一輪資料包 第六章 三角函數(shù)》由會員分享,可在線閱讀,更多相關(guān)《新編高考數(shù)學(xué)理一輪資料包 第六章 三角函數(shù)(22頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、新編高考數(shù)學(xué)復(fù)習(xí)資料 第六章 三角函數(shù) 第1講 弧度制與任意角的三角函數(shù)                   1.tan的值為(  ) A.- B. C. D.- 2.已知cosθ·tanθ<0,那么角θ是(  ) A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第一或第四象限角 3.下列各對角中終邊相同的角是(  ) A.和-+2kπ(k∈Z) B.-和π C.-和 D.和 4.角α的終邊過點(diǎn)P(-8m,-6cos60°),且cosα=-,則m的值是(  ) A. B.- C.-

2、D. 5.已知點(diǎn)P落在角θ的終邊上,且θ∈[0,2π),則θ的值為(  ) A. B. C. D. 6.已知角θ的頂點(diǎn)與原點(diǎn)重合,始邊與x軸的正半軸重合,終邊在直線y=2x上,則cos2θ=(  ) A.- B.- C. D. 7.已知兩角α,β之差為1°,其和為1弧度,則α,β的大小分別為(  ) A.和 B.28°和27° C.0.505和0.495 D.和 8.已知角α的頂點(diǎn)在原點(diǎn)上,始邊與x軸正半軸重合,點(diǎn)P(-4m,3m)(m>0)是角α終邊上一點(diǎn),則2sinα+cosα=________. 9.如圖K6-1-1,向半徑為3

3、,圓心角為的扇形OAB內(nèi)投一個質(zhì)點(diǎn),則該質(zhì)點(diǎn)落在其內(nèi)切圓內(nèi)的概率為________. 圖K6-1-1 10.判斷下列各式的符號: (1)tan125°·sin278°;  (2). 11.(1)已知扇形的周長為10,面積為4,求扇形中心角的弧度數(shù); (2)已知扇形的周長為40,當(dāng)它的半徑和中心角取何值時,才能使扇形的面積最大?最大面積是多少? 第2講 同角三角函數(shù)的基本關(guān)系式與誘導(dǎo)公式                   1.sin330°=(  ) A.- B.- C.

4、 D. 2.α是第四象限角,cosα=,sinα=(  ) A. B.- C. D.- 3.比較sin2013°,cos2013°,tan2013°的大小,正確的是(  ) A.sin2013°>cos2013>tan2013° B.tan2013°>sin2013°>cos2013° C.tan2013°>cos2013°>sin2013° D.cos2013°>sin2013°>tan2013° 4.(2012年遼寧)已知sinα-cosα=,α∈(0,π),則sin2α=(  ) A.-1 B.- C. D.1 5.(2012年江西)若=,則ta

5、n2α=(  ) A.- B. C.- D. 6.若sinx+cosx=,x∈(0,π),則sinx-cosx的值為(  ) A.± B.- C. D. 7.(2012年江西)若tanθ+=4,則sin2θ=(  ) A. B. C. D. 8.有四個關(guān)于三角函數(shù)的命題: p1:?x∈R,sin2+cos2=; p2:?x,y∈R,sin(x-y)=sin x-sin y; p3:?x∈[0,π],=sin x; p4:sin x=cos y?x+y=. 其中是假命題的是(  ) A.p1,p4 B.p2,p4 C.p1,p3 D.p2,p4

6、 9.函數(shù)y=asinx-bcosx的圖象的一條對稱軸為x=,則直線ax-by+c=0的傾斜角為________. 10.已知tanα=2.求: (1); (2)4sin2α-3sinαcosα-5cos2α. 11.已知向量a=(m,-1),b=(sinx,cosx),f(x)=a·b,且滿足f=1. (1)求函數(shù)y=f(x)的解析式; (2)求函數(shù)y=f(x)的最大值及其對應(yīng)的x值; (3)若f(α)=,求的值. 第3講 三角函數(shù)的

7、圖象與性質(zhì)                   1.函數(shù)f(x)=sin,x∈R的最小正周期為(  ) A. B.π C.2π D.4π 2.(2012年天津)設(shè)φ∈R,則“φ=0”是“f(x)=cos(x+φ)(x∈R)為偶函數(shù)”的(  ) A.充分而不必要條件 B.必要而不充分條件 C.充分必要條件 D.既不充分與不必要條件 3.已知函數(shù)f(x)=sin(x∈R),下面結(jié)論錯誤的是(  ) A.函數(shù)f(x)的最小正周期為2π B.函數(shù)f(x)在區(qū)間上是增函數(shù) C.函數(shù)f(x)的圖象關(guān)于直線x=0對稱 D.函數(shù)f(x)是奇函數(shù) 4.函數(shù)y=sin

8、2x+sinx-1的值域?yàn)?  ) A.[-1,1] B. C. D. 5.(2012年新課標(biāo))已知ω>0,0<φ<π,直線x=和x=是函數(shù)f(x)=sin(ωx+φ)圖象的兩條相鄰的對稱軸,則φ=(  ) A. B. C. D. 6.函數(shù)y=|tanx|cosx的圖象是(  ) 7.(2012年山東)函數(shù)y=2sin(0≤x≤9)的最大值與最小值之和為(  ) A.2- B.0 C.-1 D.-1- 8.函數(shù)y=sinx(3sinx+4cosx)(x∈R)的最大值為M,最小正周期為T,則有序數(shù)對(M,T)為(  ) A.(5,π) B.(4,π

9、) C.(-1,2π) D.(4,2π) 9.(2014年廣東廣州一模)已知函數(shù)f(x)=sinx+acosx的圖象經(jīng)過點(diǎn). (1)求實(shí)數(shù)a的值; (2)設(shè)g(x)=[f(x)]2-2,求函數(shù)g(x)的最小正周期與單調(diào)遞增區(qū)間. 10.如圖K6-3-1,函數(shù)y=2sin(πx+φ),x∈R的圖象與y軸交于點(diǎn)(0,1). (1)求φ的值; (2)設(shè)P是圖象上的最高點(diǎn),M,N是圖象與x軸的交點(diǎn),求與的夾角的余弦值. 圖K6-3-1

10、 第4講 函數(shù)y=Asin(ωx+φ)的圖象     1.設(shè)函數(shù)f(x)=cosωx(ω>0),將y=f(x)的圖象向右平移個單位長度后,所得的圖象與原圖象重合,則ω的最小值等于(  ) A. B.3 C.6 D.9 2.(2012年全國)若函數(shù)f(x)=sin,φ∈[0,2π]是偶函數(shù),則φ=(  ) A. B. C. D. 3.函數(shù)y=sin(ωx+φ)(x∈R,ω>0,0≤φ<2π)的部分圖象如圖K6-4-1,則(  ) 圖K6-4-1 A.ω=,φ= B.ω=,φ= C.ω=,φ= D.ω=,φ= 4.函數(shù)f(x)=sinx-cos的值域?yàn)?/p>

11、(  ) A.[-2 ,2] B.[-,] C.[-1,1 ] D. 5.將函數(shù)y=sinx的圖象向左平移φ(0≤φ<2π)個單位后,得到函數(shù)y=sin的圖象,則φ=(  ) A. B. C. D. 6.(2012年天津)將函數(shù)f(x)=sinωx(ω>0)的圖象向右平移個單位長度,所得圖象經(jīng)過點(diǎn),則ω的最小值是(  ) A. B.1 C. D.2 7.(2012年浙江)把函數(shù)y=cos2x+1的圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),然后向左平移1個單位長度,再向下平移 1個單位長度,得到的圖象是(  ) 8.定義在區(qū)間上的函數(shù)y=6cos

12、x的圖象與y=5tanx的圖象的交點(diǎn)為P,過點(diǎn)P作PP1⊥x軸于點(diǎn)P1,直線PP1與y=sinx的圖象交于點(diǎn)P2,則線段P1P2的長為________. 9.已知函數(shù)f(x)=Asin(ωx+φ),x∈R的圖象與x軸的交點(diǎn)中,相鄰兩個交點(diǎn)之間的距離為,且圖象上一個最低點(diǎn)為M. (1)求f(x)的解析式; (2)當(dāng)x∈,求f(x)的值域. 第5講 兩角和與差及二倍角的三角函數(shù)公式                   1.(2012年陜西)設(shè)向量a=(1,cosθ)與b=(-1,2cosθ)垂直,則c

13、os2θ=(  ) A. B. C.0 D.-1 2.若將函數(shù)y=tan 的圖象向右平移個單位長度后,與函數(shù)y=tan 的圖象重合,則ω的最小值為(  ) A. B. C. D. 3.(2012年重慶)設(shè)tanα,tanβ是方程x2-3x+2=0的兩個根,則tan(α+β)的值為(  ) A.-3 B.-1 C.1 D.3 4.若3sinα+cosα=0,則的值為(  ) A. B. C. D.-2 5.(2012年山東)若θ∈,sin2θ=,則sinθ=(  ) A. B. C. D. 6.(2012年全國)已知α為第二象限角,sinα+co

14、sα=,則cos2α=(  ) A.- B.- C. D. 7.(2013年江西)函數(shù)y=sin2x+2 sin2x的最小正周期T為________. 8.求值:=________. 9.(2013年江西)設(shè)f(x)=sin3x+cos3x,若對任意實(shí)數(shù)x都有|f(x)|≤a,則實(shí)數(shù)a的取值范圍是__________. 10.(2012年陜西)函數(shù)f(x)=Asin+1(A>0,ω>0)的最大值為3,其圖象相鄰兩條對稱軸之間的距離為. (1)求函數(shù)f(x)的解析式; (2)設(shè)α∈,則f=2,求α的值.

15、 11.(2011年天津)已知函數(shù)f(x)=tan , (1)求函數(shù)的定義域與最小正周期; (2)設(shè)α∈,若f=2cos 2α,求α的大?。? 第6講 三角函數(shù)的綜合應(yīng)用                   1.(2012年全國)已知α為第二象限角,sinα=,則sin2α=(  ) A.- B.- C. D. 2.若α∈,且sin2α+cos2α=,則tanα的值等于(  ) A. B. C. D. 3.函數(shù)f(x)=x2cos(x∈R)是(  ) A.奇函數(shù) B.偶函數(shù) C.

16、減函數(shù) D.增函數(shù) 4.(2012年遼寧)已知sinα-cosα=,α∈(0,π),則tanα=(  ) A.-1 B.- C. D.1 5.(2012年重慶)=(  ) A.- B.- C. D. 6.(2011年浙江)若0<α<,-<β<0,cos=,cos=,則cos=(  ) A. B.- C. D.- 7.(2012年江西)已知f(x)=sin2,若a=f(lg5),b=f,則(  ) A.a(chǎn)+b=0 B.a(chǎn)-b=0 C.a(chǎn)+b=1 D.a(chǎn)-b=1 8.(2011年上海)函數(shù)y=2sinx-cosx的最大值為________. 9.已知

17、tanα,tanβ是關(guān)于x的一元二次方程x2-3x+2=0的兩實(shí)根,則=________. 10.(2013年北京)已知函數(shù)f(x)=(2cos2x-1)sin2x+cos4x. (1)求f(x)的最小正周期及最大值; (2)若α∈,且f(α)=,求α的值. 11.(2012年安徽)設(shè)函數(shù)f(x)=cos+sin2x. (1)求函數(shù)f(x)的最小正周期; (2)設(shè)函數(shù)g(x)對任意x∈R,有g(shù)=g(x),且當(dāng)x∈時,g(x)=-f(x),求函數(shù)g(x)在[-π,0]上的解析式.

18、 第六章 三角函數(shù) 第1講 弧度制與任意角的三角函數(shù) 1.B 2.C 3.C 4.A 5.D 6.B 解析:依題意,得tanθ=±2,∴cosθ=±,∴cos2θ=2cos2θ-1=-1=-或cos2θ====-.故選B. 7.D 解析:由已知,得解得 8. 解析:由條件,知:x=-4m,y=3m,r==5|m|=5m,∴sinα==,cosα==-.∴2sinα+cosα=. 9. 解析:設(shè)內(nèi)切圓圓心為C,OA與內(nèi)切圓的切點(diǎn)為D,連接OC,CD.在Rt△OCD中,∠COD=.設(shè)CD=r,則OC=3-r,故3-r=2r,解出r=1

19、. 所求的概率為==. 10.解:(1)∵125°,278°角分別為第二、四象限角, ∴tan125°<0,sin278°<0. ∴tan125°·sin278°>0. (2)∵<<π,<<2π,<<π, ∴cos<0,tan<0,sin>0. ∴>0. 11.解:設(shè)扇形半徑為R,圓心角為θ,所對的弧長為l. (1)依題意,得 ∴2θ2-17θ+8=0,解得θ=8或. ∵8>2π(舍去),∴θ=. (2)扇形的周長為40,即θR+2R=40, S=lR=θR2=θR·2R≤2=100. 當(dāng)且僅當(dāng)θR=2R,即R=10,θ=2時,扇形面積取得最大值,最大值為100.

20、 第2講 同角三角函數(shù)的基本關(guān)系式與誘導(dǎo)公式 1.B 2.B 3.B 4.A 5.B 6.D 解析:由sinx+cosx=兩邊平方,得1+2sinxcosx=,∴2sinxcosx=-<0. ∴x∈.∴(sinx-cosx)2=1-sin2x=,且sinx>cosx.∴sinx-cosx=. 7.D 解析:∵tanθ+=+===4,∴sin2θ=. 8.A 解析:sin2+cos2=1,所以p1 是假命題;sin x=cos y?x+y=2kπ+,所以p4 是假命題. 9. 解析:方法一:函數(shù)y=asinx-bcosx的圖象的一條對稱軸為x=,∴當(dāng)x=時,函數(shù)取得極值,求導(dǎo)y/=a

21、cosx+bsinx,∴acos+bsin=0,解出a=-b.則直線ax-by+c=0的斜率為=-1, ∴直線ax-by+c=0的傾斜角為. 方法二:函數(shù)y=asinx-bcosx的圖象的一條對稱軸為x=,∴f(0)=f,即-b=a, 則直線ax-by+c=0的斜率為=-1, ∴直線ax-by+c=0的傾斜角為. 10.解:(1)===-1. (2)4sin2α-3sinαcosα-5cos2α= ===1. 11.解:(1)f(x)=a·b=msinx-cosx.f=1, 即msin-cos=1,∴m=1.∴f(x)=sinx-cosx. (2) f(x)=sinx-co

22、sx=sin. 當(dāng)x-=2kπ+(k∈Z),即x=2kπ+(k∈Z)時,f(x)max=. (3)f(α)=,即sinα-cosα=. 兩邊平方,得(sinα-cosα)2=,∴2sinαcosα=, ==2sinαcosα=. 第3講 三角函數(shù)的圖象與性質(zhì) 1.D 2.A 3.D 4.C 5.A 6.C 解析:方法一:y=|sinx|·,分類討論. 方法二:y=|tanx|cosx的符號與cosx相同.故選C. 7.A 解析:由0≤x≤9可知,-≤x-≤, 則sin∈,則y=2sin∈[-,2],則最大值與最小值之和為2-.故選A. 8.B 解析:y=sinx(3sin

23、x+4cosx)=3sin2x+4sinxcosx =3×+2sin2x=2sin2x-cos2x+ =sin+,其最大值M=+=4,最小正周期T==π. 9.解:(1)因?yàn)楹瘮?shù)f(x)=sinx+acosx的圖象經(jīng)過點(diǎn),所以f=0. 即sin+acos=0. 即-+=0.解得a=. (2)方法一:由(1),得f(x)=sinx+cosx. 所以g(x)=[f(x)]2-2=(sinx+cosx)2-2 =sin2x+2 sinxcosx+3cos2x-2 =sin2x+cos2x =2=2sin. 所以g(x)的最小正周期為=π. 因?yàn)楹瘮?shù)y=sinx的單調(diào)增區(qū)間為(

24、k∈Z), 所以當(dāng)2kπ-≤2x+≤2kπ+(k∈Z)時,函數(shù)g(x)單調(diào)遞增, 即kπ-≤x≤kπ+(k∈Z)時,函數(shù)g(x)單調(diào)遞增. 所以函數(shù)g(x)的單調(diào)遞增區(qū)間為(k∈Z). 方法二:由(1),得f(x)=sinx+cosx =2 =2sin. 所以g(x)=[f(x)]2-2=2-2 =4sin2-2 =-2cos. 所以函數(shù)g(x)的最小正周期為=π. 因?yàn)楹瘮?shù)y=cosx的單調(diào)遞減區(qū)間為[2kπ,2kπ+π](k∈Z), 所以當(dāng)2kπ≤2x+≤2kπ+π(k∈Z)時,函數(shù)g(x)單調(diào)遞增. 即kπ-≤x≤kπ+(k∈Z)時,函數(shù)g(x)單調(diào)遞增. 所

25、以函數(shù)g(x)的單調(diào)遞增區(qū)間為(k∈Z). 10.解:(1)∵函數(shù)圖象過點(diǎn)(0,1),∴2sinφ=1, 即sinφ=.∵0≤φ≤,∴φ=. (2)由函數(shù)y=2sin及其圖象,得 M,P,N, ∴=,=, 從而cos〈,〉==. 第4講 函數(shù)y=Asin(ωx+φ)的圖象 1.C 2.C 3.C 4.B 5.D 解析:由函數(shù)y=sinx向左平移φ個單位得到y(tǒng)=sin(x+φ)的圖象.由條件,知:函數(shù)y=sin(x+φ)可化為函數(shù)y=sin,比較個各選項(xiàng),只有y=sin=sin. 6.D 解析:函數(shù)向右平移得到函數(shù)g(x)=f=sinω=sin,此時函數(shù)過點(diǎn),∴sinω=

26、0,即=kπ,∴ω=2k,k∈Z,∴ω的最小值為2.故選D. 7.A 解析:由題意,y=cos2x+1的圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),即解析式為y=cosx+1,向左平移一個單位為y=cos(x+1)+1,向下平移一個單位為y=cos(x+1),∵曲線y=cos(x+1)由余弦曲線y=cosx左移一個單位而得,∴曲線y=cos(x+1)經(jīng)過點(diǎn)和,且在區(qū)間上的函數(shù)值小于0.故選A. 8. 解析:線段P1P2的長即為sinx的值,且其中的x滿足6cosx=5tanx,解得sinx=,故線段P1P2的長為. 9.解:(1)由最低點(diǎn)為M,得A=2. 由x軸上相鄰的兩個交點(diǎn)

27、之間的距離為,得=, 即T=π,ω===2. 由點(diǎn)M在圖象上,得2sin=-2, 即sin=-1, 故+φ=2kπ-,k∈Z.∴φ=2kπ-. 又φ∈,∴φ=.故f(x)=2sin. (2)∵x∈,∴2x+∈. 當(dāng)2x+=,即x=時,f(x)取得最大值2; 當(dāng)2x+=,即x=時,f(x)取得最小值-1. 故f(x)的值域?yàn)閇-1,2]. 第5講 兩角和與差及二倍角的三角函數(shù)公式 1.C 2.D 3.A 4.A 5.D 6.A 解析:∵sinα+cosα=,∴兩邊平方,得1+2sinαcosα=.∴2sinαcosα=-<0.∵已知α為第二象限角,∴sinα>0,co

28、sα<0,sinα-cosα====,∴cos2α=cos2α-sin2α=(cosα-sinα)(cosα+sinα)=-×=-.故選A. 7.π 8. 解析:原式= = ==. 9.a(chǎn)≥2 解析:∵不等式|f(x)|≤a對任意實(shí)數(shù)x恒成立, 令F(x)=|f(x)|=|sin3x+cos3x|,則a≥F(x)max. ∵f(x)=sin3x+cos3x=2sin, ∴-2≤f(x)≤2.∴0≤F(x)≤2,F(xiàn)(x)max=2.∴a≥2. 即實(shí)數(shù)a的取值范圍是a≥2. 10.解:(1)∵函數(shù)的最大值為3,∴A+1=3,即A=2. ∵函數(shù)圖象的相鄰兩條對稱軸之間的距離為,

29、 ∴最小正周期為T=π. ∴ω=2,故函數(shù)f(x)的解析式為y=2sin+1. (2)∵f=2sin+1=2, 即sin=. ∵0<α<,∴-<α-<. ∴α-=,故α=. 11.解:(1)函數(shù)的定義域滿足2x+≠kπ+,k∈Z, 解得x≠+,k∈Z. 所以函數(shù)的定義域?yàn)? 最小正周期為T=. (2)方法一:因?yàn)閒=2cos 2α, 所以tan =2cos 2α, 所以=2, 于是=2, 因?yàn)棣痢?,所以sin+cos α≠0, 所以2=, 因而1-2sin αcos α=,sin 2α=, 因?yàn)棣痢剩? 所以2α∈,所以2α=,α=. 方法二:tan =2

30、cos 2α=2sin , =4sin cos , 因?yàn)棣痢?,所以sin ≠0. 得cos 2=.故cos =. 于是α+=.所以α=. 第6講 三角函數(shù)的綜合應(yīng)用 1.A 2.D 3.A 4.A 解析:方法一:∵sinα-cosα=,∴sin=.∴sin=1.∵α∈(0,π),∴α=.∴tanα=-1.故選A. 方法二:∵sinα-cosα=,∴(sinα-cosα)2=2.∴sin2α=-1. ∵α∈(0,π),∴2α∈(0,2π),∴2α=.∴α=. ∴tanα=-1.故選A. 5.C 解析:= ===sin30°=. 6.C 解析:∵cos=,0<α<, ∴

31、sin=. 又∵cos=,-<β<0, ∴sin=. ∴cos=cos =coscos+sinsin =×+×=. 7.C 解析:a=f(lg5)=sin2==, b=f=sin2==,則a+b=1. 8. 解析:y=2sinx-cosx=sin(x+φ),∴最大值為. 9.1 解析:因?yàn)椋剑剑? ∵tanα,tanβ為方程的兩實(shí)根, ∴∴==1. 10.解:(1)∵f(x)=(2cos2x-1)sin2x+cos4x =sin4x+cos4x =sin ∴T==,函數(shù)的最大值為. (2)∵f(x)=sin,f(α)=, ∴sin=1. ∴4α+=+2kπ,k∈Z,∴α=+. 又∵α∈,∴α=π. 11.解:f(x)=cos+sin2x =cos2x-sin2x+(1-cos2x)=-sin2x. (1)函數(shù)y=g(x)的最小正周期T==π. (2)當(dāng)x∈時,g(x)=-f(x)=sin2x; 當(dāng)x∈時,∈,g(x)=g=sin2=-sin2x; 當(dāng)x∈時,(x+π)∈,g(x)=g(x+π)=sin2=sin2x. ∴函數(shù)g(x)在[-π,0]上的解析式為 g(x)=

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!