高考數(shù)學(xué)專題復(fù)習(xí)教案: 立體幾何中的向量方法(一)——證明平行與垂直備考策略

上傳人:努力****83 文檔編號:65054508 上傳時間:2022-03-22 格式:DOC 頁數(shù):5 大?。?29.50KB
收藏 版權(quán)申訴 舉報 下載
高考數(shù)學(xué)專題復(fù)習(xí)教案: 立體幾何中的向量方法(一)——證明平行與垂直備考策略_第1頁
第1頁 / 共5頁
高考數(shù)學(xué)專題復(fù)習(xí)教案: 立體幾何中的向量方法(一)——證明平行與垂直備考策略_第2頁
第2頁 / 共5頁
高考數(shù)學(xué)專題復(fù)習(xí)教案: 立體幾何中的向量方法(一)——證明平行與垂直備考策略_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學(xué)專題復(fù)習(xí)教案: 立體幾何中的向量方法(一)——證明平行與垂直備考策略》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)專題復(fù)習(xí)教案: 立體幾何中的向量方法(一)——證明平行與垂直備考策略(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 立體幾何中的向量方法(一)——證明平行與垂直備考策略 主標(biāo)題:立體幾何中的向量方法(一)——證明平行與垂直備考策略 副標(biāo)題:通過考點分析高考命題方向,把握高考規(guī)律,為學(xué)生備考復(fù)習(xí)打通快速通道。 關(guān)鍵詞:向量證平行,向量證垂直,向量求角,備考策略 難度:2 重要程度:4 內(nèi)容 考點一 利用空間向量證明平行問題 【例1】 如圖所示,在正方體ABCD-A1B1C1D1中,M,N分別是C1C,B1C1的中點.求證:MN∥平面A1BD. 思路 若用向量證明線面平行,可轉(zhuǎn)化為判定向量∥,或證明與平面A1BD的法向量垂直. 證明 法一 如圖所示,以D為原點,DA,DC,DD1

2、所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,設(shè)正方體的棱長為1,則可求得M, N,D(0,0,0),A1(1,0,1),B(1,1,0).于是=,=(1,0,1),=(1,1,0). 設(shè)平面A1BD的法向量是n=(x,y,z). 則n·=0,且n·=0,得 取x=1,得y=-1,z=-1. ∴n=(1,-1,-1). 又·n=·(1,-1,-1)=0, ∴⊥n, 又MN?平面A1BD, ∴MN∥平面A1BD. 法二?。剑剑?-)=.∴∥, 又∵MN與DA1不共線, ∴MN∥DA1, 又∵MN?平面A1BD,A1D?平面A1BD, ∴MN∥平面A1BD.

3、 【備考策略】 (1)恰當(dāng)建立坐標(biāo)系,準(zhǔn)確表示各點與相關(guān)向量的坐標(biāo),是運用向量法證明平行和垂直的關(guān)鍵. (2)證明直線與平面平行,只須證明直線的方向向量與平面的法向量的數(shù)量積為零,或證直線的方向向量與平面內(nèi)的不共線的兩個向量共面,或證直線的方向向量與平面內(nèi)某直線的方向向量平行,然后說明直線在平面外即可.這樣就把幾何的證明問題轉(zhuǎn)化為向量運算. 考點二 利用空間向量證明垂直問題 【例2】如圖,在三棱錐P-ABC中,AB=AC,D為BC的中點,PO⊥平面ABC,垂足O落在線段AD上.已知BC=8,PO=4,AO=3,OD=2. (1)證明:AP⊥BC; (2)若點M是線段AP上一

4、點,且AM=3.試證明平面AMC⊥平面BMC. 證明 (1)如圖所示,以O(shè)為坐標(biāo)原點,以射線OP為z軸的正半軸建立空間直角坐標(biāo)系O-xyz. 則O(0,0,0),A(0,-3,0), B(4,2,0),C(-4,2,0),P(0,0,4). 于是=(0,3,4), =(-8,0,0), ∴·=(0,3,4)·(-8,0,0)=0, 所以⊥,即AP⊥BC. (2)由(1)知|AP|=5, 又|AM|=3,且點M在線段AP上, ∴==, 又=(-8,0,0),=(-4,5,0),=(-4,-5,0), ∴=+=, 則·=(0,3,4)·=0, ∴⊥,即AP⊥BM,

5、 又根據(jù)(1)的結(jié)論知AP⊥BC, ∴AP⊥平面BMC,于是AM⊥平面BMC. 又AM?平面AMC,故平面AMC⊥平面BCM. 【備考策略】(1)利用已知的線面垂直關(guān)系構(gòu)建空間直角坐標(biāo)系,準(zhǔn)確寫出相關(guān)點的坐標(biāo),從而將幾何證明轉(zhuǎn)化為向量運算.其中靈活建系是解題的關(guān)鍵. (2)其一證明直線與直線垂直,只需要證明兩條直線的方向向量垂直;其二證明面面垂直:①證明兩平面的法向量互相垂直;②利用面面垂直的判定定理,只要能證明一個平面內(nèi)的一條直線的方向向量為另一個平面的法向量即可. 考點三 利用空間向量解決探索性問題 【例3】 如圖,在長方體ABCD-

6、A1B1C1D1中,AA1=AD=1,E為CD的中點. (1)求證:B1E⊥AD1; (2)在棱AA1上是否存在一點P,使得DP∥平面B1AE?若存在,求AP的長;若不存在,說明理由. 思路 由長方體特征,以A為坐標(biāo)原點建立空間坐標(biāo)系,從而將幾何位置關(guān)系轉(zhuǎn)化為向量運算.第(1)問證明·=0,第(2)問是存在性問題,由與平面B1AE的法向量垂直,通過計算作出判定. (1)證明 以A為原點,,,的方向分別為x軸,y軸,z軸的正方向建立空間直角坐標(biāo)系(如圖). 設(shè)AB=a,則A(0,0,0),D(0,1,0),D1(0,1,1),E,B1(a,0,1). 故=(0,1,1),=,

7、=(a,0,1),=. ∵·=-×0+1×1+(-1)×1=0, ∴B1E⊥AD1. (2)解 假設(shè)在棱AA1上存在一點P(0,0,z0). 使得DP∥平面B1AE,此時=(0,-1,z0). 又設(shè)平面B1AE的法向量n=(x,y,z). ∵n⊥平面B1AE,∴n⊥,n⊥,得 取x=1,得平面B1AE的一個法向量n= 要使DP∥平面B1AE,只要n⊥,有-az0=0, 解得z0=. 又DP?平面B1AE, ∴存在點P,滿足DP∥平面B1AE,此時AP=. 【備考策略】 立體幾何開放性問題求解方法有以下兩種: (1)根據(jù)題目的已知條件進行綜合分析和觀察猜想,找出點或線的位置,然后再加以證明,得出結(jié)論; (2)假設(shè)所求的點或線存在,并設(shè)定參數(shù)表達已知條件,根據(jù)題目進行求解,若能求出參數(shù)的值且符合已知限定的范圍,則存在這樣的點或線,否則不存在.本題是設(shè)出點P的坐標(biāo),借助向量運算,判定關(guān)于z0的方程是否有解.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!