《吉林省松原市扶余縣第一中學高三數(shù)學 第七章 第2講 解三角形應用舉例復習課件 新人教A版》由會員分享,可在線閱讀,更多相關《吉林省松原市扶余縣第一中學高三數(shù)學 第七章 第2講 解三角形應用舉例復習課件 新人教A版(24頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第2講解三角形應用舉例1解斜三角形的常用定理與公式(1)三角形內(nèi)角和定理:ABC180;sin(AB)_;cos(AB)_.sinCcosC(2)正弦定理:_(R 為ABC 的外接圓半徑)2Ra b csinA sinB sinCc2a2b22abcosC(3)余弦定理:_.(4)三角形面積公式:_.(5)三角形邊角定理:大邊對大角同,大角對大邊2利用正弦定理,可以解決兩類有關三角形的問題(1)已知兩角和任一邊,求其他兩邊和一角;(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其他的邊和角)3利用余弦定理,可以解決兩類有關三角形的問題(1)已知三邊,求三個角;(2)已知兩邊和它們
2、的夾角,求第三邊和其他兩個角A等腰直角三角形B直角三角形C等腰三角形D等邊三角形1在ABC中,若2acosBc,則ABC的形狀一定是( )C2如圖 721 某河段的兩岸可視為平行,在河段的一岸邊選取兩點A,B,觀察對岸的點C,測得CAB75,CBA45,且 AB200 米則 A,C 兩點的距離為( )圖 721A面積為_.D1考點1 向量在三角形中的應用C(c,0)(1)若 c5,求 sinA 的值;(2)若A 為鈍角,求 c 的取值范圍例1:已知ABC的三個頂點的直角坐標分別為A(3,4),B(0,0),(1)角的處理方法通常有三類:一是用邊表示角,如正余弦定理;二是用向量表示角,如數(shù)量積的
3、定義;三是用直線的斜率表示角(2)用向量處理角的問題時要注意兩點:一是要注意角的取值范圍;二是利用向量處理ABC 的角,角A 是直角的充要條件是【互動探究】考點2 有關三角形的邊角計算問題解三角形與兩角和與差的三角函數(shù)交匯處問題要注意以下幾點:一是已知三角形的三邊可以求任意一個內(nèi)角的正弦值與余弦值,可以求三角形的面積;二是要注意角的取值范圍,如當角的余弦值為正數(shù)且不共線時,此角一定為銳角,如當角的余弦值為負數(shù)且不共線時,此角一定為鈍角,如當角的余弦值為零時,此角一定為直角【互動探究】2(2011 年廣東廣州二模)如圖722,漁船甲位于島嶼 A的南偏西 60方向的 B 處,且與島嶼 A 相距 1
4、2 海里,漁船乙以10海里/小時的速度從島嶼 A 出發(fā)沿正北方向航行,若漁船甲同時從B 處出發(fā)沿北偏東的方向追趕漁船乙,剛好用 2 小時追上圖 722(1)求漁船甲的速度;(2)求 sin的值易錯、易混、易漏13在三角形中,對三邊長度成等比數(shù)列或成等差數(shù)列的條件不會用例題:在ABC 中,角 A,B,C 所對的邊分別為 a,b,c,依次成等比數(shù)列(1)求角 B 的取值范圍;【失誤與防范】主要問題是學生對三角形的三邊成等比數(shù)列這一條件不會使用.第一,看不出b2ac 和余弦定理之間的聯(lián)系;第二是在余弦定理中不知道使用基本不等式求cosB 的取值范圍.將一個假分式化為帶分式是一條基本規(guī)律,需要好好體會.1運用正弦定理、余弦定理與三角形面積公式可以求有關三角形的邊、角、外接圓半徑、面積的值或范圍等基本問題2由斜三角形六個元素(三條邊和三個角)中的三個元素(其中至少有一邊),求其余三個未知元素的過程,叫做解斜三角形其中已知兩邊及一邊的對角解三角形可能出現(xiàn)無解,或一解或兩解的情況本節(jié)的難點是三角形形狀的判斷與三角形實際應用問題的解決主要是學生看不到問題的本質(zhì),受到許多非本質(zhì)問題的干擾要加強將實際問題轉化為數(shù)學問題的能力的訓練