高中數(shù)學(xué)《矩陣與變換》全部課件和學(xué)案(共29套)蘇教版選修4-22.2.12.2.2恒等伸壓變換

上傳人:沈*** 文檔編號:72761277 上傳時間:2022-04-09 格式:PPT 頁數(shù):12 大?。?.30MB
收藏 版權(quán)申訴 舉報 下載
高中數(shù)學(xué)《矩陣與變換》全部課件和學(xué)案(共29套)蘇教版選修4-22.2.12.2.2恒等伸壓變換_第1頁
第1頁 / 共12頁
高中數(shù)學(xué)《矩陣與變換》全部課件和學(xué)案(共29套)蘇教版選修4-22.2.12.2.2恒等伸壓變換_第2頁
第2頁 / 共12頁
高中數(shù)學(xué)《矩陣與變換》全部課件和學(xué)案(共29套)蘇教版選修4-22.2.12.2.2恒等伸壓變換_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué)《矩陣與變換》全部課件和學(xué)案(共29套)蘇教版選修4-22.2.12.2.2恒等伸壓變換》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)《矩陣與變換》全部課件和學(xué)案(共29套)蘇教版選修4-22.2.12.2.2恒等伸壓變換(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、幾種常見的平面變換幾種常見的平面變換11111221:baab規(guī)規(guī)定定 行行矩矩陣陣與與列列矩矩陣陣的的乘乘法法法法則則為為: :0111221220 xaaaay二二階階矩矩陣陣與與列列向向量量的的乘乘法法法法則則1111121111122121baaababb0110120111221220210220 xaxayaaaayaxay 溫故知新溫故知新矩陣與平面列向量的乘法:矩陣與平面列向量的乘法: 給定一個矩陣給定一個矩陣,就確定了一個變換就確定了一個變換,它的作用是它的作用是將平面上的一個點將平面上的一個點(向量向量)變變換成另外一個點換成另外一個點(向量向量). 反過來反過來,平面中常

2、見變換是否都可平面中常見變換是否都可以用矩陣來表示呢以用矩陣來表示呢?如果可以如果可以,又該怎樣表示呢又該怎樣表示呢?問題問題: : 已知已知ABC, A(2,0), B(-1,0), C(0,2), ABC, A(2,0), B(-1,0), C(0,2), 它們在變換它們在變換T T作用下保持位置不變作用下保持位置不變, , 能否用矩能否用矩陣陣M M來表示這一變換來表示這一變換? ?問題情境問題情境ABC問題情境問題情境將圖中所示的四邊形將圖中所示的四邊形ABCDABCD保持位置不變,保持位置不變,能否用矩陣能否用矩陣M M來表示?來表示?A(-1,2)B(1,1)C(1,-1)D(-3

3、,-1)恒等變換矩陣恒等變換矩陣( (單位矩陣單位矩陣):): 恒等變換恒等變換: :構(gòu)建數(shù)學(xué)構(gòu)建數(shù)學(xué) 對平面上任何一點(向量)或圖形施以矩陣 對應(yīng)的變換,都把自己變成自己。這種特殊的矩陣稱為恒等變換矩陣恒等變換矩陣( (單位矩單位矩陣陣).).1001 恒等變換矩陣實施的對應(yīng)變換稱為恒等變換矩陣實施的對應(yīng)變換稱為恒等變換恒等變換。二階單位矩陣一般記為二階單位矩陣一般記為E例例1.1.求求 在矩陣在矩陣M= M= 作用下的作用下的圖形圖形. . 221xy 1 00 1 數(shù)學(xué)應(yīng)用數(shù)學(xué)應(yīng)用垂直伸壓變換矩陣:垂直伸壓變換矩陣: 伸壓變換:伸壓變換: 將平面圖形作沿將平面圖形作沿y y軸方向伸長或壓

4、縮軸方向伸長或壓縮, ,或或作沿作沿x x軸方向伸長或壓縮的變換矩陣軸方向伸長或壓縮的變換矩陣, ,通常稱通常稱做沿做沿y y軸或軸或x x軸的軸的垂直伸壓變換矩陣垂直伸壓變換矩陣. . 伸壓變換矩陣對應(yīng)的變換稱為伸壓變換矩陣對應(yīng)的變換稱為垂直伸壓垂直伸壓變換變換, ,簡稱簡稱伸壓變換伸壓變換. . 10102M2001N構(gòu)建數(shù)學(xué)構(gòu)建數(shù)學(xué)例例2.2.已知曲線已知曲線y=sinxy=sinx經(jīng)過變換經(jīng)過變換T T作用后變?yōu)樾伦饔煤笞優(yōu)樾碌那€的曲線C , C , 試求變換試求變換T T對應(yīng)的矩陣對應(yīng)的矩陣M,M,以及曲線以及曲線C C的解析表達式的解析表達式. .變變: :已知曲線已知曲線y y

5、sinxsinx經(jīng)過變換經(jīng)過變換T T作用后變?yōu)樾伦饔煤笞優(yōu)樾碌那€的曲線y ysin2xsin2x,畫出相關(guān)的圖象,并求出變,畫出相關(guān)的圖象,并求出變換換T T對應(yīng)的矩陣對應(yīng)的矩陣M M。數(shù)學(xué)應(yīng)用數(shù)學(xué)應(yīng)用數(shù)學(xué)應(yīng)用數(shù)學(xué)應(yīng)用例例3.3.驗證圓驗證圓C: C: 在矩陣在矩陣A= A= 對對應(yīng)的伸壓變換下變?yōu)橐粋€橢圓應(yīng)的伸壓變換下變?yōu)橐粋€橢圓, , 并求此橢圓并求此橢圓的方程的方程. .221xy 1 00 2 P34 1,2,3,4. P34 1,2,3,4. 課堂反饋課堂反饋恒等變換矩陣恒等變換矩陣( (單位矩陣單位矩陣) )恒等變換恒等變換1 0 0 1M課堂小結(jié)課堂小結(jié)伸壓變換矩陣伸壓變換矩陣 伸壓變換伸壓變換 0 0 1aM1 0 0 bN

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!