《2018年中考數(shù)學(xué)專題復(fù)習(xí)模擬演練 幾何圖形的初步認(rèn)識(shí)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018年中考數(shù)學(xué)專題復(fù)習(xí)模擬演練 幾何圖形的初步認(rèn)識(shí)(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
幾何圖形的初步認(rèn)識(shí)
一、選擇題
1.下列圖形屬于平面圖形的是?????????????????????????(?? ? )
A.?長(zhǎng)方體??????????????????????????????????B.?圓錐體??????????????????????????????????C.?圓柱體??????????????????????????????????D.?圓
【答案】D
2.下列語(yǔ)句中正確的是( ?。?
A.?兩點(diǎn)之間直線的長(zhǎng)度叫做這兩點(diǎn)間的距離???????????B.?兩點(diǎn)之間的線段叫做這兩點(diǎn)之問(wèn)的距離
C.
2、?兩點(diǎn)之間線的長(zhǎng)度叫做這兩點(diǎn)間的距離???????????????D.?兩點(diǎn)之間線段的長(zhǎng)度叫做這兩點(diǎn)問(wèn)的距離
【答案】D
3.把一塊直尺與一塊三角板如圖放置,若∠1=40°,則∠2的度數(shù)為(?? )
A.125° B.120° C.140° D.130°
【答案】D
4.如圖,AB∥CD,AE平分∠CAB交CD于點(diǎn)E,若∠C=50°,則∠AED=(?? )
A.?65°?????????????????????????????????????B.?115°?????????????????????????????????????C.
3、?125°?????????????????????????????????????D.?130°
【答案】B
5.如圖,△ABC中BD、CD平分∠ABC、∠ACB過(guò)D作直線平行于BC,交AB、AC于E、F,當(dāng)∠A的位置及大小變化時(shí),線段EF和BE+CF的大小關(guān)系是(?? )
A.?EF=BE+CF???????????????????????B.?EF>BE+CF???????????????????????C.?EF<BE+CF???????????????????????D.?不能確定
【答案】A
6.如圖,在△ABC中,∠B=46°,∠C=54°,AD平分∠B
4、AC,交BC于D,DE∥AB,交AC于E,則∠ADE的大小是( ?。?
?
A.?45°???????????????????????????????????????B.?54°???????????????????????????????????????C.?40°???????????????????????????????????????D.?50°
【答案】C
7.如圖,兩個(gè)直角∠AOB,∠COD有相同的頂點(diǎn)O,下列結(jié)論:①∠AOC=∠BOD;②∠AOC+∠BOD=90°;③若OC平分∠AOB,則OB平分∠COD;④∠AOD的平分線與∠COB的平分線是同一條射線.其中正確的個(gè)
5、數(shù)有(?? )
A.?1個(gè)???????????????????????????????????????B.?2個(gè)???????????????????????????????????????C.?3個(gè)???????????????????????????????????????D.?4個(gè)
【答案】C
8.如圖,下列條件中,不能判斷直線a∥b的是(?? )
A.?∠1=∠3???????????????????????????B.?∠2=∠3???????????????????????????C.?∠4=∠5???????????????????????????D
6、.?∠2+∠4=180°
【答案】B
9.如圖,將三角尺的直角頂點(diǎn)放在直尺的一邊上,∠1=30°,∠2=50°,? 則∠3的度數(shù)等于( ??)
A.?50°???????????????????????????????????????B.?30°???????????????????????????????????????C.?20°???????????????????????????????????????D.?15°
【答案】C
10.在△ABC中, ∠ABC=∠C=2∠A,BD是∠ABC的平分線,DE∥BC,則圖中等腰三角形的個(gè)數(shù)是(????? )
A.?2
7、???????????????????????????????????????????B.?3???????????????????????????????????????????C.?4???????????????????????????????????????????D.?5
【答案】D
11.如圖,已知l1∥l2∥l3 , 相鄰兩條平行直線間的距離相等,若等腰直角△ABC的三個(gè)頂點(diǎn)分別在這三條平行直線上,則sinα的值是( ?。?
A.????????????????????????????????????????B.???????????????????????????
8、?????????????C.????????????????????????????????????????D.?
【答案】D
12.如圖,小軍同學(xué)用剪刀沿直線將一片平整的樹(shù)葉剪掉一部分,發(fā)現(xiàn)剩下樹(shù)葉的周長(zhǎng)比原樹(shù)葉的周長(zhǎng)要小,能正確解釋這一現(xiàn)象的數(shù)學(xué)知識(shí)是(?? )
A.?垂線段最短?????????????????????????????????????????????????????????B.?經(jīng)過(guò)一點(diǎn)有無(wú)數(shù)條直線
C.?經(jīng)過(guò)兩點(diǎn),有且僅有一條直線?????????????????????????????D.?兩點(diǎn)之間,線段最短
【答案】D
二、填空題
13
9、.如圖,一束平行太陽(yáng)光照射到正五邊形上,若∠1=46°,則∠2=________?.
?
【答案】26°
14.如圖是一個(gè)時(shí)鐘的鐘面,8:00時(shí)的分針與時(shí)針?biāo)傻摹夕恋亩葦?shù)是________.
【答案】120°
15.如果∠α和∠β互補(bǔ),且∠α>∠β,則下列表示角的式子中:①90°﹣∠β;②∠α﹣90°;③ (∠α+∠β);④ (∠α﹣∠β).能表示∠β的余角的是________(填寫序號(hào))
【答案】①②④
16.如圖,直線MN分別交直線AB,CD于E,F(xiàn),其中,∠AEF的對(duì)頂角是∠________,∠BEF的同位角是∠________.
【答案】∠
10、BEM;∠DFN
17.如圖,直線 ∥ ∥ ?,且? 與? 的距離為1, 與? 的距離為2,等腰?△ABC的頂點(diǎn)分別在直線? , , ?上,AB=AC,∠BAC=120°?,則等腰三角形的底邊長(zhǎng)為_(kāi)_______。
【答案】6?, 2?, 2?, 2 .
18.若一圓錐的軸截面是等邊三角形,則其側(cè)面展開(kāi)圖的圓心角是________.
【答案】180°
19.將一副三角板按如圖方式擺放在一起,且∠1比∠2大30°,則∠1的度數(shù)等于________°.
【答案】60
20.如圖,邊長(zhǎng)為4的等邊三角形ABC中,E是對(duì)稱軸AD上的一個(gè)動(dòng)點(diǎn),連接EC,將線段
11、EC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得到FC,連接DF,則在點(diǎn)E運(yùn)動(dòng)過(guò)程中,DF的最小值是________?.
?
【答案】1
三、解答題
21.如圖,已知:AB∥DE,∠1=∠2,直線AE與DC平行嗎?請(qǐng)說(shuō)明理由.
答:AE∥DC;
理由如下:
∵AB∥DE(已知),
∴∠1=∠3(兩直線平行,內(nèi)錯(cuò)角相等),
∵∠1=∠2(已知),
∴∠2=∠3(等量代換),
∴AE∥DC(內(nèi)錯(cuò)角相等,兩直線平行).
22.如圖,AB∥CD,AE平分∠BAD,CD與AE相交于F,∠CFE=∠E.求證:AD∥BC.
證明:∵AE平分∠BAD, ∴∠1=∠2,
12、∵AB∥CD,∠CFE=∠E,
∴∠1=∠CFE=∠E,
∴∠2=∠E,
∴AD∥BC
23.如圖,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=42°,求∠BED的度數(shù).
解:∵BE⊥AE∴∠AEB=90° ∵AE平分∠BAC∴∠CAE=∠BAE=42°
又∵ED∥AC∴∠AED=180°﹣∠CAE=180°﹣42°=138°
∴∠BED=360°﹣∠AEB﹣∠AED=132°
24.O為直線DA上一點(diǎn),OB⊥OF,EO是∠AOB的平分線.
(1)如圖(1),若∠AOB=130°,求∠EOF的度數(shù);
(2)若∠AOB=α,90
13、°<α<180°,求∠EOF的度數(shù);
(3)若∠AOB=α,0°<α<90°,請(qǐng)?jiān)趫D(2)中畫出射線OF,使得(2)中∠EOF的結(jié)果仍然成立.
(1)解:∵∠AOB=130°,EO是∠AOB的平分線,
∴ =65°,
∵OB⊥OF,
∴∠BOF=90°,
∴∠AOF=∠AOB﹣∠BOF=130°﹣90°=40°,
∴∠EOF=∠AOE﹣∠AOF=65°﹣40°=25°
(2)解:∵∠AOB=α,90°<α<180°,EO是∠AOB的平分線,
∴∠AOE= ,
∵∠BOF=90°,
∴∠AOF=α﹣90°,
∴∠EOF=∠AOE﹣∠AOF= ﹣(α﹣90
14、°)=90
(3)解:如圖,∵∠AOB=α,0°<α<90°,
∴∠BOE=∠AOE= ,
∵∠BOF=90°,
∴∠EOF=∠BOF﹣∠BOE=90 .
25.(2017?泰州)閱讀理解:
如圖①,圖形l外一點(diǎn)P與圖形l上各點(diǎn)連接的所有線段中,若線段PA1最短,則線段PA1的長(zhǎng)度稱為點(diǎn)P到圖形l的距離.
例如:圖②中,線段P1A的長(zhǎng)度是點(diǎn)P1到線段AB的距離;線段P2H的長(zhǎng)度是點(diǎn)P2到線段AB的距離.
解決問(wèn)題:
如圖③,平面直角坐標(biāo)系xOy中,點(diǎn)A、B的坐標(biāo)分別為(8,4),(12,7),點(diǎn)P從原點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向x軸正方向運(yùn)動(dòng)了t秒.
15、
(1)當(dāng)t=4時(shí),求點(diǎn)P到線段AB的距離;
(2)t為何值時(shí),點(diǎn)P到線段AB的距離為5?
(3)t滿足什么條件時(shí),點(diǎn)P到線段AB的距離不超過(guò)6?(直接寫出此小題的結(jié)果)
【答案】(1)解:如圖1,作AC⊥x軸于點(diǎn)C,
則AC=4、OC=8,
當(dāng)t=4時(shí),OP=4,
∴PC=4,
∴點(diǎn)P到線段AB的距離PA= = =4 ;
(2)解:如圖2,過(guò)點(diǎn)B作BD∥x軸,交y軸于點(diǎn)D,
①當(dāng)點(diǎn)P位于AC左側(cè)時(shí),∵AC=4、P1A=5,
∴P1C= = =3,
∴OP1=5,即t=5;
②當(dāng)點(diǎn)P位于AC右側(cè)時(shí),過(guò)點(diǎn)A作AP2⊥AB,交x軸于點(diǎn)P2
16、 ,
∴∠CAP2+∠EAB=90°,
∵BD∥x軸、AC⊥x軸,
∴CE⊥BD,
∴∠ACP2=∠BEA=90°,
∴∠EAB+∠ABE=90°,
∴∠ABE=∠P2AC,
在△ACP2和△BEA中,
∵ ,
∴△ACP2≌△BEA(ASA),
∴AP2=BA= = =5,
而此時(shí)P2C=AE=3,
∴OP2=11,即t=11;
(3)解:如圖3,
①當(dāng)點(diǎn)P位于AC左側(cè),且AP3=6時(shí),
則P3C= = =2 ,
∴OP3=OC﹣P3C=8﹣2 ;
②當(dāng)點(diǎn)P位于AC右側(cè),且P3M=6時(shí),
過(guò)點(diǎn)P2作P2N⊥P3M于點(diǎn)N,
則四邊形AP2NM是矩形,
∴∠AP2N=90°,∠ACP2=∠P2NP3=90°,AP2=MN=5,
∴△ACP2∽△P2NP3 , 且NP3=1,
∴ = ,即 = ,
∴P2P3= ,
∴OP3=OC+CP2+P2P3=8+3+ = ,
∴當(dāng)8﹣2 ≤t≤ 時(shí),點(diǎn)P到線段AB的距離不超過(guò)6.
10