歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > PPT文檔下載  

《定積分及其應(yīng)用》PPT課件

  • 資源ID:16064254       資源大小:1,014.10KB        全文頁數(shù):67頁
  • 資源格式: PPT        下載積分:14.9積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要14.9積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機(jī)號,方便查詢和重復(fù)下載(系統(tǒng)自動生成)
支付方式: 微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認(rèn)打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。

《定積分及其應(yīng)用》PPT課件

第五章 定積分及其應(yīng)用,本章主題詞:曲邊梯形的面積、定積分、變上限的積分、牛頓-萊布尼茨公式、換元積分法、分部積分法、廣義積分。,,數(shù)學(xué)不僅在摧毀著物理科學(xué)中緊鎖的大門,而且正在侵入并搖撼著生物科學(xué)、心理學(xué)和社會科學(xué)。會有這樣一天,經(jīng)濟(jì)的爭執(zhí)能夠用數(shù)學(xué)以一種沒有爭吵的方式來解決,現(xiàn)在想象這一天的到來不再是謊繆的了。 伽德納,Archimedes,第一節(jié) 定積分的概念與性質(zhì),實例1 (求曲邊梯形的面積),一、定積分問題的提出,用矩形面積近似取代曲邊梯形面積,,,,,,,,,,,,,,顯然:小矩形越多,矩形總面積越接近曲邊梯形面積,(四個小矩形),(九個小矩形),公元前二百多年前的阿基米德就已會用此法求出許多不規(guī)則圖形的面積,阿基米德,,觀察下列演示過程,注意當(dāng)分割加細(xì)時, 矩形面積和與曲邊梯形面積的關(guān)系,播放,觀察下列演示過程,注意當(dāng)分割加細(xì)時, 矩形面積和與曲邊梯形面積的關(guān)系,觀察下列演示過程,注意當(dāng)分割加細(xì)時, 矩形面積和與曲邊梯形面積的關(guān)系,觀察下列演示過程,注意當(dāng)分割加細(xì)時, 矩形面積和與曲邊梯形面積的關(guān)系,觀察下列演示過程,注意當(dāng)分割加細(xì)時, 矩形面積和與曲邊梯形面積的關(guān)系,觀察下列演示過程,注意當(dāng)分割加細(xì)時, 矩形面積和與曲邊梯形面積的關(guān)系,觀察下列演示過程,注意當(dāng)分割加細(xì)時, 矩形面積和與曲邊梯形面積的關(guān)系,觀察下列演示過程,注意當(dāng)分割加細(xì)時, 矩形面積和與曲邊梯形面積的關(guān)系,觀察下列演示過程,注意當(dāng)分割加細(xì)時, 矩形面積和與曲邊梯形面積的關(guān)系,觀察下列演示過程,注意當(dāng)分割加細(xì)時, 矩形面積和與曲邊梯形面積的關(guān)系,觀察下列演示過程,注意當(dāng)分割加細(xì)時, 矩形面積和與曲邊梯形面積的關(guān)系,觀察下列演示過程,注意當(dāng)分割加細(xì)時, 矩形面積和與曲邊梯形面積的關(guān)系,觀察下列演示過程,注意當(dāng)分割加細(xì)時, 矩形面積和與曲邊梯形面積的關(guān)系,觀察下列演示過程,注意當(dāng)分割加細(xì)時, 矩形面積和與曲邊梯形面積的關(guān)系,觀察下列演示過程,注意當(dāng)分割加細(xì)時, 矩形面積和與曲邊梯形面積的關(guān)系,觀察下列演示過程,注意當(dāng)分割加細(xì)時, 矩形面積和與曲邊梯形面積的關(guān)系,曲邊梯形如圖所示:,(1)分割,(2)近似代替,,(3)求和,(4)取極限,曲邊梯形面積為,求曲邊梯形面積所用的方法步驟:,實例2 (求變速直線運動的路程),思路:把整段時間分割成若干小段,每小段上速度看作不變,求出各小段的路程再相加,便得到路程的近似值,最后通過對時間的無限細(xì)分過程求得路程的精確值,(1)分割,(3)求和,(4)取極限,(2)近似代替,二、定積分的定義,定義,記為,積分上限,積分下限,黎曼積分,積分和,注意:,則,則當(dāng),例1 利用定義計算定積分,解,曲邊梯形的面積,曲邊梯形的面積的負(fù)值,定積分的幾何意義,定理1,定理2,定積分存在定理(可積充分條件),三、定積分的性質(zhì),對定積分的補(bǔ)充規(guī)定:,說明,在下面的性質(zhì)中,假定定積分都存在,且不考慮積分上下限的大小,證明,(此性質(zhì)可以推廣到有限多個函數(shù)作和的情況),性質(zhì)1,證明,性質(zhì)2,,,補(bǔ)充:不論 的相對位置如何, 上式總成立.,例 若,(定積分對于積分區(qū)間具有可加性),則,性質(zhì)3,證明,性質(zhì)4,性質(zhì)5,性質(zhì)5的推論:,證明,(1),(定積分不等式性質(zhì)),證明,說明: 可積性是顯然的.,性質(zhì)5的推論:,(絕對值不等式性質(zhì)),解,令,于是,證明,(此性質(zhì)可用于估計積分值的大致范圍),性質(zhì)6,解,解,證明,由閉區(qū)間上連續(xù)函數(shù)的介值定理知,性質(zhì)7(定積分中值定理),積分中值公式,使,即,積分中值公式的幾何解釋:,,,,解,由積分中值定理知有,使,(定積分第二中值定理 .),7,和,小 結(jié),定積分的實質(zhì):特殊和式的極限,定積分的思想和方法:,求近似以直(不變)代曲(變),取極限,3定積分的性質(zhì),(注意估值性質(zhì)、積分中值定理的應(yīng)用),4典型問題,()估計積分值;,()不計算定積分比較積分大小,證,命題得證,所以可積必有界.,思考題,1、將和式極限:,2、表示成定積分.,思考題解答,1、原式,,,例,證明,利用對數(shù)的性質(zhì)得,極限運算與對數(shù)運算換序得,故,練 習(xí) 題,練習(xí)題答案,練習(xí)題答案,

注意事項

本文(《定積分及其應(yīng)用》PPT課件)為本站會員(san****019)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng)(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網(wǎng)速或其他原因下載失敗請重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!