九年級(jí)數(shù)學(xué)下冊 3.7 弧長及扇形的面積教案 (新版)北師大版.doc
-
資源ID:3731947
資源大?。?span id="00cs0km" class="font-tahoma">154.50KB
全文頁數(shù):6頁
- 資源格式: DOC
下載積分:9.9積分
快捷下載

會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。
|
九年級(jí)數(shù)學(xué)下冊 3.7 弧長及扇形的面積教案 (新版)北師大版.doc
弧長及扇形的面積
教學(xué)目標(biāo)
(一)教學(xué)知識(shí)點(diǎn)
1.經(jīng)歷探索弧長計(jì)算公式及扇形面積計(jì)算公式的過程;
2.了解弧長計(jì)算公式及扇形面積計(jì)算公式,并會(huì)應(yīng)用公式解決問題.
(二)能力訓(xùn)練要求
1.經(jīng)歷探索弧長計(jì)算公式及扇形面積計(jì)算公式的過程,培養(yǎng)學(xué)生的探索能力.
2.了解弧長及扇形面積公式后,能用公式解決問題,訓(xùn)練學(xué)生的數(shù)學(xué)運(yùn)用能力.
(三)情感與價(jià)值觀要求
1.經(jīng)歷探索弧長及扇形面積計(jì)算公式,讓學(xué)生體驗(yàn)教學(xué)活動(dòng)充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性.
2.通過用弧長及扇形面積公式解決實(shí)際問題,讓學(xué)生體驗(yàn)數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,提高他們的學(xué)習(xí)積極性,同時(shí)提高大家的運(yùn)用能力.
教學(xué)重點(diǎn)
1.經(jīng)歷探索弧長及扇形面積計(jì)算公式的過程.
2.了解弧長及扇形面積計(jì)算公式.
3.會(huì)用公式解決問題.
教學(xué)難點(diǎn)
1.探索弧長及扇形面積計(jì)算公式.
2.用公式解決實(shí)際問題.
教學(xué)方法
學(xué)生互相交流探索法
教具準(zhǔn)備
2.投影片四張
第一張:(記作3.7A)
第二張:(記作3.7B)
第三張:(記作3.7C)
第四張:(記作3.7D)
教學(xué)過程
Ⅰ.創(chuàng)設(shè)問題情境,引入新課
[師]在小學(xué)我們已經(jīng)學(xué)習(xí)過有關(guān)圓的周長和面積公式,弧是圓周的一部分,扇形是圓的一部分,那么弧長與扇形面積應(yīng)怎樣計(jì)算?它們與圓的周長、圓的面積之間有怎樣的關(guān)系呢?本節(jié)課我們將進(jìn)行探索.
Ⅱ.新課講解
一、復(fù)習(xí)
1.圓的周長如何計(jì)算?
2.圓的面積如何計(jì)算?
3.圓的圓心角是多少度?
[生]若圓的半徑為r,則周長l=2πr,面積S=πr2,圓的圓心角是360.
二、探索弧長的計(jì)算公式
投影片(3.7A)
如圖,某傳送帶的一個(gè)轉(zhuǎn)動(dòng)輪的半徑為10cm.
(1)轉(zhuǎn)動(dòng)輪轉(zhuǎn)一周,傳送帶上的物品A被傳送多少厘米?
(2)轉(zhuǎn)動(dòng)輪轉(zhuǎn)1,傳送帶上的物品A被傳送多少厘米?
(3)轉(zhuǎn)動(dòng)輪轉(zhuǎn)n,傳送帶上的物品A被傳送多少厘米?
[師]分析:轉(zhuǎn)動(dòng)輪轉(zhuǎn)一周,傳送帶上的物品應(yīng)被傳送一個(gè)圓的周長;因?yàn)閳A的周長對(duì)應(yīng)360的圓心角,所以轉(zhuǎn)動(dòng)輪轉(zhuǎn)1,傳送帶上的物品A被傳送圓周長的;轉(zhuǎn)動(dòng)輪轉(zhuǎn)n,傳送帶上的物品A被傳送轉(zhuǎn)1時(shí)傳送距離的n倍.
[生]解:(1)轉(zhuǎn)動(dòng)輪轉(zhuǎn)一周,傳送帶上的物品A被傳送2π10=20πcm;
(2)轉(zhuǎn)動(dòng)輪轉(zhuǎn)1,傳送帶上的物品A被傳送cm;
(3)轉(zhuǎn)動(dòng)輪轉(zhuǎn)n,傳送帶上的物品A被傳送n=cm.
[師]根據(jù)上面的計(jì)算,你能猜想出在半徑為R的圓中,n的圓心角所對(duì)的弧長的計(jì)算公式嗎?請大家互相交流.
[生]根據(jù)剛才的討論可知,360的圓心角對(duì)應(yīng)圓周長2πR,那么1的圓心角對(duì)應(yīng)的弧長為,n的圓心角對(duì)應(yīng)的弧長應(yīng)為1的圓心角對(duì)應(yīng)的弧長的n倍,即n.
[師]表述得非常棒.
在半徑為R的圓中,n的圓心角所對(duì)的弧長(arclength)的計(jì)算公式為:
l=.
下面我們看弧長公式的運(yùn)用.
三、例題講解
投影片(3.7B)
制作彎形管道時(shí),需要先按中心線計(jì)算“展直長度”再下料,試計(jì)算下圖中管道的展直長度,即的長(結(jié)果精確到0.1mm).
分析:要求管道的展直長度,即求的長,根根弧長公式l=可求得的長,其中n為圓心角,R為半徑.
解:R=40mm,n=110.
∴的長=πR=40π≈76.8mm.
因此,管道的展直長度約為76.8mm.
四、想一想
投影片(3.7C)
在一塊空曠的草地上有一根柱子,柱子上拴著一條長3m的繩子,繩子的另一端拴著一只狗.
(1)這只狗的最大活動(dòng)區(qū)域有多大?
(2)如果這只狗只能繞柱子轉(zhuǎn)過n角,那么它的最大活動(dòng)區(qū)域有多大?
[師]請大家互相交流.
[生](1)如圖(1),這只狗的最大活動(dòng)區(qū)域是圓的面積,即9π;
(2)如圖(2),狗的活動(dòng)區(qū)域是扇形,扇形是圓的一部分,360的圓心角對(duì)應(yīng)的圓面積,1的圓心角對(duì)應(yīng)圓面積的,即9π=,n的圓心角對(duì)應(yīng)的圓面積為n=.
[師]請大家根據(jù)剛才的例題歸納總結(jié)扇形的面積公式.
[生]如果圓的半徑為R,則圓的面積為πR2,1的圓心角對(duì)應(yīng)的扇形面積為,n的圓心角對(duì)應(yīng)的扇形面積為n.因此扇形面積的計(jì)算公式為S扇形=πR2,其中R為扇形的半徑,n為圓心角.
五、弧長與扇形面積的關(guān)系
[師]我們探討了弧長和扇形面積的公式,在半徑為R的圓中,n的圓心角所對(duì)的弧長的計(jì)算公式為l=πR,n的圓心角的扇形面積公式為S扇形=πR2,在這兩個(gè)公式中,弧長和扇形面積都和圓心角n.半徑R有關(guān)系,因此l和S之間也有一定的關(guān)系,你能猜得出嗎?請大家互相交流.
[生]∵l=πR,S扇形=πR2,
∴πR2=RπR.∴S扇形=lR.
六、扇形面積的應(yīng)用
投影片(3.7D)
扇形AOB的半徑為12cm,∠AOB=120,求的長(結(jié)果精確到0.1cm)和扇形AOB的面積(結(jié)果精確到0.1cm2)
分析:要求弧長和扇形面積,根據(jù)公式需要知道半徑R和圓心角n即可,本題中這些條件已經(jīng)告訴了,因此這個(gè)問題就解決了.
解:的長=π12≈25.1cm.
S扇形=π122≈150.7cm2.
因此,的長約為25.1cm,扇形AOB的面積約為150.7cm2.
Ⅲ.課堂練習(xí)
隨堂練習(xí)
Ⅳ.課時(shí)小結(jié)
本節(jié)課學(xué)習(xí)了如下內(nèi)容:
1.探索弧長的計(jì)算公式l=πR,并運(yùn)用公式進(jìn)行計(jì)算;
2.探索扇形的面積公式S=πR2,并運(yùn)用公式進(jìn)行計(jì)算;
3.探索弧長l及扇形的面積S之間的關(guān)系,并能已知一方求另一方.
Ⅴ.課后作業(yè)
習(xí)題3.10
Ⅵ.活動(dòng)與探究
如圖,兩個(gè)同心圓被兩條半徑截得的的長為6π cm,的長為10π cm,又AC=12cm,求陰影部分ABDC的面積.
分析:要求陰影部分的面積,需求扇形COD的面積與扇形AOB的面積之差.根據(jù)扇形面積S=lR,l已知,則需要求兩個(gè)半徑OC與OA,因?yàn)镺C=OA+AC,AC已知,所以只要能求出OA即可.
解:設(shè)OA=R,OC=R+12,∠O=n,根據(jù)已知條件有:
得.
∴3(R+12)=5R,∴R=18.
∴OC=18+12=30.
∴S=S扇形COD-S扇形AOB=10π30-6π18=96π cm2.
所以陰影部分的面積為96π cm2.
板書設(shè)計(jì)
3.7 弧長及扇形的面積
一、1.復(fù)習(xí)圓的周長和面積計(jì)算公式;
2.探索弧長的計(jì)算公式;
3.例題講解;
4.想一想;
5.弧長及扇形面積的關(guān)系;
6.扇形面積的應(yīng)用.
二、課堂練習(xí)
三、課時(shí)小結(jié)
四、課后作業(yè)