歡迎來(lái)到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁(yè) 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

(全國(guó)通用版)2019高考數(shù)學(xué)二輪復(fù)習(xí) 板塊四 考前回扣 專題3 三角函數(shù)、三角恒等變換與解三角形學(xué)案 理.doc

  • 資源ID:3934670       資源大?。?span id="43cs6ig" class="font-tahoma">173.50KB        全文頁(yè)數(shù):10頁(yè)
  • 資源格式: DOC        下載積分:9.9積分
快捷下載 游客一鍵下載
會(huì)員登錄下載
微信登錄下載
三方登錄下載: 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要9.9積分
郵箱/手機(jī):
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機(jī)號(hào),方便查詢和重復(fù)下載(系統(tǒng)自動(dòng)生成)
支付方式: 微信支付   
驗(yàn)證碼:   換一換

 
賬號(hào):
密碼:
驗(yàn)證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開(kāi),此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。

(全國(guó)通用版)2019高考數(shù)學(xué)二輪復(fù)習(xí) 板塊四 考前回扣 專題3 三角函數(shù)、三角恒等變換與解三角形學(xué)案 理.doc

回扣3 三角函數(shù)、三角恒等變換與解三角形 1.三種三角函數(shù)的性質(zhì) 函數(shù) y=sin x y=cos x y=tan x 圖象 單調(diào)性 在(k∈Z) 上單調(diào)遞增;在(k∈Z) 上單調(diào)遞減 在[-π+2kπ,2kπ](k∈Z)上單調(diào)遞增;在[2kπ,π+2kπ](k∈Z)上單調(diào)遞減 在(k∈Z)上單調(diào)遞增 對(duì)稱性 對(duì)稱中心:(kπ,0)(k∈Z);對(duì)稱軸:x=+kπ(k∈Z) 對(duì)稱中心:(k∈Z); 對(duì)稱軸:x=kπ(k∈Z) 對(duì)稱中心:(k∈Z) 2.函數(shù)y=Asin(ωx+φ)(ω>0,A>0)的圖象 (1)“五點(diǎn)法”作圖 設(shè)z=ωx+φ,令z=0,,π,,2π,求出相應(yīng)的x的值與y的值,描點(diǎn)、連線可得. (2)由三角函數(shù)的圖象確定解析式時(shí),一般利用五點(diǎn)中的零點(diǎn)或最值點(diǎn)作為解題突破口. (3)圖象變換 y=sin xy=sin(x+φ) y=sin(ωx+φ) y=Asin(ωx+φ). 3.準(zhǔn)確記憶六組誘導(dǎo)公式 對(duì)于“α,k∈Z”的三角函數(shù)值與α角的三角函數(shù)值的關(guān)系口訣:奇變偶不變,符號(hào)看象限. 4.三角函數(shù)恒等變換“四大策略” (1)常值代換:特別是“1”的代換,1=sin2θ+cos2θ=tan 45等. (2)降次與升次:正用二倍角公式升次,逆用二倍角公式降次. (3)弦、切互化:一般是切化弦. (4)靈活運(yùn)用輔助角公式asin α+bcos α=sin(α+φ). 5.正弦定理及其變形 ===2R(2R為△ABC外接圓的直徑). 變形:a=2Rsin A,b=2Rsin B,c=2Rsin C. sin A=,sin B=,sin C=. a∶b∶c=sin A∶sin B∶sin C. 6.余弦定理及其推論、變形 a2=b2+c2-2bccos A,b2=a2+c2-2accos B, c2=a2+b2-2abcos C. 推論:cos A=,cos B=, cos C=. 變形:b2+c2-a2=2bccos A,a2+c2-b2=2accos B, a2+b2-c2=2abcos C. 7.面積公式 S△ABC=bcsin A=acsin B=absin C. 1.利用同角三角函數(shù)的平方關(guān)系式求值時(shí),不要忽視角的范圍,要先判斷函數(shù)值的符號(hào). 2.在求三角函數(shù)的值域(或最值)時(shí),不要忽略x的取值范圍. 3.求函數(shù)f(x)=Asin(ωx+φ)的單調(diào)區(qū)間時(shí),要注意A與ω的符號(hào),當(dāng)ω<0時(shí),需把ω的符號(hào)化為正值后求解. 4.三角函數(shù)圖象變換中,注意由y=sin ωx的圖象變換得到y(tǒng)=sin(ωx+φ)的圖象時(shí),平移量為,而不是φ. 5.在已知兩邊和其中一邊的對(duì)角利用正弦定理求解時(shí),要注意檢驗(yàn)解是否滿足“大邊對(duì)大角”,避免增解. 1.若sin θcos θ=,則tan θ+的值是(  ) A.-2 B.2 C.2 D. 答案 B 解析 tan θ+=+==2. 2.下列函數(shù)中,最小正周期為π的偶函數(shù)是(  ) A.y=sin B.y=cos C.y=sin 2x+cos 2x D.y=sin x+cos x 答案 A 解析 化簡(jiǎn)函數(shù)的解析式,A中,y=cos 2x是最小正周期為π的偶函數(shù). 3.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c.已知a=2,c=,cos A=-,則b的值為(  ) A.1 B. C. D. 答案 A 解析 根據(jù)余弦定理得a2=b2+c2-2bccos A,則22=b2+()2-2b,所以b2+b-2=0, 解得b=1,或b=-2(舍去),故選A. 4.要得到函數(shù)y=sin的圖象,只需將函數(shù)y=sin 4x的圖象(  ) A.向左平移個(gè)單位長(zhǎng)度 B.向右平移個(gè)單位長(zhǎng)度 C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度 答案 B 解析 ∵y=sin=sin, ∴要得到y(tǒng)=sin的圖象,只需將函數(shù)y=sin 4x的圖象向右平移個(gè)單位長(zhǎng)度. 5.若函數(shù)f(x)=sin(2x+θ)+cos(2x+θ)(0<θ<π)的圖象關(guān)于點(diǎn)對(duì)稱,則函數(shù)f(x)在上的最小值是(  ) A.-1 B.- C.- D.- 答案 B 解析 f(x)=sin(2x+θ)+cos(2x+θ) =2sin, 則由題意知,f=2sin=0,又因?yàn)?<θ<π,所以<π+θ+<,所以π+θ+=2π,所以θ=,所以f(x)=-2sin 2x. 又因?yàn)楹瘮?shù)f(x)在上是減函數(shù), 所以函數(shù)f(x)在上的最小值為 f=-2sin =-,故選B. 6.(2016全國(guó)Ⅲ)在△ABC中,B=,BC邊上的高等于BC,則cos A等于(  ) A. B. C.- D.- 答案 C 解析 設(shè)BC邊上的高AD交BC于點(diǎn)D, 由題意B=,AD=BD=BC,DC=BC, tan∠BAD=1,tan∠CAD=2,tan A==-3, 所以cos A=-,故選C. 7.若sin 2α=,sin(β-α)=,且α∈,β∈,則α+β的值是(  ) A. B. C.或 D.或 答案 A 解析 ∵sin 2α=,α∈, ∴2α∈,即α∈,cos 2α=-, 又sin(β-α)=,β∈, ∴β-α∈,cos(β-α)=-, ∴cos(α+β)=cos [(β-α)+2α] =cos(β-α)cos 2α-sin(β-α)sin 2α =-=, 又α+β∈, ∴α+β=,故選A. 8.設(shè)函數(shù)y=sin ωx(ω>0)的最小正周期是T,將其圖象向左平移T個(gè)單位長(zhǎng)度后,得到的圖象如圖所示,則函數(shù)y=sin ωx(ω>0)的單調(diào)遞增區(qū)間是(  ) A.(k∈Z) B.(k∈Z) C.(k∈Z) D.(k∈Z) 答案 A 解析 方法一 由已知圖象知,y=sin ωx(ω>0)的最小正周期是2=,所以=,解得ω=,所以y=sin x.由2kπ-≤x≤2kπ+得到單調(diào)遞增區(qū)間是(k∈Z). 方法二 因?yàn)門=,所以將y=sin ωx(ω>0)的圖象向左平移T個(gè)單位長(zhǎng)度后, 所對(duì)應(yīng)的解析式為y=sin ω. 由圖象知,ω=,所以ω=, 所以y=sinx.由2kπ-≤x≤2kπ+得到單調(diào)遞增區(qū)間是(k∈Z). 9.已知f(x)=sin x+cos x(x∈R),函數(shù)y=f(x+φ)的圖象關(guān)于直線x=0對(duì)稱,則φ的值可以是(  ) A. B. C. D. 答案 B 解析 已知f=sin x+cos x=2sin, y=f=2sin關(guān)于直線x=0對(duì)稱, 所以f(0)=2sin=2, 所以φ+=+kπ,k∈Z,φ=+kπ,k∈Z, 當(dāng)k=0時(shí),φ=,故選B. 10.已知函數(shù)f(x)=2cos(ωx+φ)-1,其圖象與直線y=1相鄰兩個(gè)交點(diǎn)的距離為,若f(x)>0對(duì)x∈恒成立,則φ的取值范圍是(  ) A. B. C. D. 答案 B 解析 由已知得函數(shù)f(x)的最小正周期為,則ω=, 當(dāng)x∈時(shí),x+φ∈, 因?yàn)閒(x)>0,即cos>, 所以(k∈Z), 解得-+2kπ≤φ≤-+2kπ(k∈Z), 又|φ|<,所以-<φ≤-,故選B. 11.函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ為常數(shù),A>0,ω>0,0<φ<π)的部分圖象如圖所示,則f的值為_(kāi)_______. 答案 1 解析 根據(jù)圖象可知,A=2,=-, 所以周期T=π,ω==2.又函數(shù)過(guò)點(diǎn), 所以sin=1,又0<φ<π, 所以φ=,則f(x)=2sin, 因此f=2sin=1. 12.已知函數(shù)f(x)=3sin(ω>0)和g(x)=3cos(2x+φ)的圖象的對(duì)稱中心完全相同,若x∈,則f(x)的取值范圍是________. 答案  解析 由兩個(gè)三角函數(shù)圖象的對(duì)稱中心完全相同可知,兩函數(shù)的周期相同,故ω=2, 所以f(x)=3sin, 那么當(dāng)x∈時(shí),-≤2x-≤, 所以-≤sin≤1,故f(x)∈. 13.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,角B為銳角,且sin2B=8sin Asin C,則的取值范圍為_(kāi)___________. 答案  解析 因?yàn)閟in2B=8sin Asin C,由正弦定理可知, b2=8ac,所以cos B= == =-5∈(0,1), 令t=,t>0,則0<-5<1, 解得<t2<,即t∈. 14.如圖,在平面四邊形ABCD中,AD=1,CD=2,AC=,cos∠BAD=-,sin∠CBA=,則BC的長(zhǎng)為_(kāi)_______. 答案 3 解析 因?yàn)閏os∠BAD=-, 故sin∠BAD= =, 在△ADC中運(yùn)用余弦定理,可得 cos∠CAD==, 則sin∠CAD= =, 所以sin∠BAC=sin(∠BAD-∠CAD) =+==, 在△ABC中運(yùn)用正弦定理,可得 =?BC==3. 15.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知cos C+(cos A-sin A)cos B=0. (1)求角B的大?。? (2)若a=2,b=,求△ABC的面積. 解 (1)由已知得 -cos(A+B)+cos Acos B-sin Acos B=0, 即sin Asin B-sin Acos B=0,因?yàn)閟in A≠0, 所以sin B-cos B=0,又cos B≠0,所以tan B=, 又0<B<π,所以B=. (2)因?yàn)閟in B=,cos B=,b=, 所以===, 又a=2, 所以sin A==, 因?yàn)閍<b,所以cos A=. 因?yàn)锳+B+C=π, 所以sin C=sin(A+B)=sin Acos B+cos Asin B=, 所以S△ABC=absin C=. 16.已知函數(shù)f(x)=sin xcos x+sin2x+(x∈R). (1)當(dāng)x∈時(shí),求函數(shù)f(x)的最小值和最大值; (2)設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且c=,f(C)=2,若向量m=(1,a)與向量n=(2,b)共線,求a,b的值. 解 (1)∵函數(shù)f(x)=sin xcos x+sin2x+(x∈R), ∴f(x)=sin 2x++ =sin 2x-cos 2x+1 =sin+1. ∵-≤x≤,∴-≤2x-≤, ∴-≤sin≤1, ∴1-≤sin+1≤2, ∴f(x)的最小值是1-,最大值是2. (2)∵f(C)=sin+1=2, ∴sin=1, ∵0<C<π,∴-<2C-<, ∴2C-=,解得C=. ∵向量m=(1,a)與向量n=(2,b)共線, ∴b-2a=0,即b=2a.① 由余弦定理,得c2=a2+b2-2abcos , 即a2+b2-ab=3.② 由①②得a=1,b=2.

注意事項(xiàng)

本文((全國(guó)通用版)2019高考數(shù)學(xué)二輪復(fù)習(xí) 板塊四 考前回扣 專題3 三角函數(shù)、三角恒等變換與解三角形學(xué)案 理.doc)為本站會(huì)員(xt****7)主動(dòng)上傳,裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng)(點(diǎn)擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因?yàn)榫W(wǎng)速或其他原因下載失敗請(qǐng)重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!