高三數學復習 第11篇 第4節(jié) 證明方法
-
資源ID:40256756
資源大?。?span id="ngxo1f4" class="font-tahoma">117.50KB
全文頁數:4頁
- 資源格式: DOC
下載積分:10積分
快捷下載

會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預覽文檔經過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。
|
高三數學復習 第11篇 第4節(jié) 證明方法
高考數學精品復習資料
2019.5
第十一篇 第4節(jié)
一、選擇題
1.(20xx濰坊模擬)用反證法證明某命題時,對結論“自然數a,b,c中恰有一個偶數”正確的反設是( )
A.自然數a,b,c中至少有兩個偶數
B.自然數a,b,c中至少有兩個偶數或都是奇數
C.自然數a,b,c都是奇數
D.自然數a,b,c都是偶數
解析:“恰有一個”反面應是至少有兩個或都是奇數.故選B.
答案:B
2.設f(x)是定義在R上的奇函數,且當x≥0時,f(x)單調遞減,若x1+x2>0,則f(x1)+f(x2)的值( )
A.恒為負值 B.恒等于零
C.恒為正值 D.無法確定正負
解析:由f(x)是定義在R上的奇函數,且當x≥0時,f(x)單調遞減,可知f(x)是R上的單調遞減函數,由x1+x2>0,可知x1>-x2,f(x1)<f(-x2)=-f(x2),
則f(x1)+f(x2)<0,故選A.
答案:A
3.分析法又稱執(zhí)果索因法,若用分析法證明“設a>b>c,且a+b+c=0,求證:<a”索的因應是( )
A.a-b>0 B.a-c>0
C.(a-b)(a-c)>0 D.(a-b)(a-c)<0
解析:<a?b2-ac<3a2
?(a+c)2-ac<3a2
?a2+2ac+c2-ac-3a2<0
?-2a2+ac+c2<0
?2a2-ac-c2>0
?(a-c)(2a+c)>0?(a-c)(a-b)>0.故選C.
答案:C
4.(20xx汕頭一中月考)用數學歸納法證明等式:1+2+3+…+n2=(n∈N*),則從n=k到n=k+1時左邊應添加的項為( )
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2
解析:∵當n=k時,等式左邊=1+2+3+…+k2,
當n=k+1時,等式左邊=1+2+3+…+k2+(k2+1)+(k2+2)+…+(k+1)2,
∴比較上述兩個式子,當n=k+1時,等式左邊是在假設n=k時等式成立的基礎上,等式的左邊加上了(k2+1)+(k2+2)+…+(k+1)2.
故選D.
答案:D
5.(20xx遼寧大連模擬)設S是至少含有兩個元素的集合,在S上定義了一個二元運算“*”(即對任意的a,b∈S,對于有序元素對(a,b),在S中有唯一確定的元素a*b與之對應),若對任意的a,b∈S,有a*(b*a)=b,則對任意的a,b∈S,下列等式中不恒成立的是( )
A.(a*b)*a=a B.[a*(b*a)]*(a*b)=a
C.b*(b*b)=b D.(a*b)*[b*(a*b)]=b
解析:由已知條件可得對任意a,b∈S,a*(b*a)=b,
則b*(b*b)=b,[a*(b*a)]*(a*b)=b*(a*b)=a,(a*b)*[b*(a*b)]=(a*b)*a=b,即選項B,C,D中的等式均恒成立,僅選項A中的等式不恒成立.故選A.
答案:A
6.對于不等式<n+1(n∈N*),某同學用數學歸納法的證明過程如下:
(1)當n=1時,<1+1,不等式成立.
(2)假設當n=k(k∈N*且k≥1)時,不等式成立,
即<k+1,則當n=k+1時,=<==(k+1)+1,所以當n=k+1時,不等式成立,
則上述證法( )
A.過程全部正確
B.n=1驗得不正確
C.歸納假設不正確
D.從n=k到n=k+1的推理不正確
解析:在n=k+1時,沒有應用n=k時的假設,故推理錯誤.故選D.
答案:D
二、填空題
7.設a>b>0,m=-,n=,則m,n的大小關系是________.
解析:法一 取a=2,b=1,得m<n.
法二 分析法:-<?+>?a<b+2+a-b?2>0,顯然成立.
答案:m<n
8.已知點An(n,an)為函數y=圖象上的點,Bn(n,bn)為函數y=x圖象上的點,其中n∈N*,設cn=an-bn,則cn與cn+1的大小關系為________.
解析:由條件得cn=an-bn=-n=,
∴cn隨n的增大而減小.
∴cn+1<cn.
答案:cn+1<cn
9.用反證法證明:若整系數一元二次方程ax2+bx+c=0(a≠0)有有理數根,那么a、b、c中至少有一個是偶數.用反證法證明時,假設的內容是________.
解析:“至少有一個”的否定為“都不是”.
答案:假設a,b,c都不是偶數
10.用數學歸納法證明:12+22+…+n2+…+22+12=,第二步證明由“k到k+1”時,左邊應加________.
解析:當n=k時,左邊=12+22+…+k2+…+22+12;
當n=k+1時,左邊=12+22+…+k2+(k+1)2+k2+…+22+12.
答案:(k+1)2+k2
三、解答題
11.已知a>0,求證:-≥a+-2.
證明:要證-≥a+-2.
只要證+2≥a++.
∵a>0,故只要證2≥2,
即a2++4+4≥
a2+2++2+2,
從而只要證2≥,
只要證4≥2,即a2+≥2,
而上述不等式顯然成立,故原不等式成立.
12.(20xx湖南常德模擬)設a>0,f(x)=,令a1=1,an+1=f(an),n∈N*.
(1)寫出a2,a3,a4的值,并猜想數列{an}的通項公式;
(2)用數學歸納法證明你的結論.
(1)解:∵a1=1,∴a2=f(a1)=f(1)=;
a3=f(a2)=;a4=f(a3)=.
猜想an=(n∈N*).
(2)證明:①易知,n=1時,猜想正確.
②假設n=k時猜想正確,
即ak=,
則ak+1=f(ak)==
==.
這說明,n=k+1時猜想正確.
由①②知,對于任何n∈N*,都有an=.