金版教程高考數(shù)學 文二輪復習講義:第二編 專題整合突破 專題三 三角函數(shù)與解三角形 第二講 三角恒等變換與解三角形 Word版含解析
《金版教程高考數(shù)學 文二輪復習講義:第二編 專題整合突破 專題三 三角函數(shù)與解三角形 第二講 三角恒等變換與解三角形 Word版含解析》由會員分享,可在線閱讀,更多相關《金版教程高考數(shù)學 文二輪復習講義:第二編 專題整合突破 專題三 三角函數(shù)與解三角形 第二講 三角恒等變換與解三角形 Word版含解析(179頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 第二講 三角恒等變換與解三角形 必記公式] 1.同角三角函數(shù)之間的關系 (1)平方關系:sin2α+cos2α=1; (2)商數(shù)關系:tanα=. 2.誘導公式 (1)公式:Sα+2kπ;Sπα;S-α;Sα; (2)巧記口訣:奇變偶不變,符號看象限,α當銳角看. 3.兩角和與差的正弦、余弦、正切公式 (1)sin(αβ)=sinαcosβcosαsinβ; (2)cos(αβ)=cosαcosβ?sinαsinβ; (3)tan(αβ)=; (4)輔助角公式:asinα+bcosα=sin(α+φ)=cos(α+θ). 4.二倍角的正弦、余弦、正
2、切公式 (1)sin2α=2sinαcosα; (2)cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α; (3)tan2α=. 5.降冪公式 (1)sin2α=; (2)cos2α=. 6.正弦定理 ===2R(2R為△ABC外接圓的直徑). 變形:a=2RsinA,b=2RsinB,c=2RsinC. sinA=,sinB=,sinC=. a∶b∶c=sinA∶sinB∶sinC. 7.余弦定理 a2=b2+c2-2bccosA,b2=a2+c2-2accosB, c2=a2+b2-2abcosC. 推論:cosA=,cosB=, cos
3、C=. 變形:b2+c2-a2=2bccosA,a2+c2-b2=2accosB,a2+b2-c2=2abcosC. 8.面積公式 S△ABC=bcsinA=acsinB=absinC. 重要結(jié)論] 1.判斷三角形形狀的常用結(jié)論 (1)sinA=sinB且A+B≠π?等腰三角形; (2)sin2A=sin2B?A=B或A+B=?等腰或直角三角形; (3)cosA=cosB?A=B?等腰三角形; (4)cos2A=cos2B?A=B?等腰三角形; (5)sin(A-B)=0?A=B?等腰三角形; (6)A=60且b=c?等邊三角形; (7)A,B,C成等差數(shù)列?B=60;
4、 (8)a2<b2+c2(A為三角形中的最大角)?三角形為銳角三角形(A為銳角); (9)a2=b2+c2?三角形為直角三角形(A為直角); (10)a2>b2+c2?三角形為鈍角三角形(A為鈍角). 2.射影定理 a=bcosC+ccosB. b=acosC+ccosA. c=acosB+bcosA. 失分警示] 1.同角關系應用錯誤:利用同角三角函數(shù)的平方關系開方時,忽略判斷角所在的象限或判斷出錯,導致三角函數(shù)符號錯誤. 2.誘導公式的應用錯誤:利用誘導公式時,三角函數(shù)名變換出錯或三角函數(shù)值的符號出錯. 3.忽視解的多種情況 如已知a,b和A,應先用正弦定理求B,由
5、A+B+C=π,求C,再由正弦定理或余弦定理求邊c,但解可能有多種情況. 4.忽略角的范圍 應用正、余弦定理求解邊、角等量的最值(范圍)時,要注意角的范圍. 5.忽視解的實際意義 求解實際問題,要注意解得的結(jié)果要與實際相吻合. 考點 三角恒等變換 典例示法 題型1 求角 典例1 20xx中山模擬]已知cos(2α-β)=-,sin(α-2β)=,0<β<<α<,則α+β=________. 解析] 由0<β<<α<易得<2α-β<π,-<α-2β<,<α+β<,故sin(2α-β)=,cos(α-2β)=,cos(α+β)=cos(2α-β)-(α-2β)]=
6、cos(2α-β)cos(α-2β)+sin(2α-β)sin(α-2β)=,故α+β=. 答案] 解答此類問題的關鍵是結(jié)合已知條件,求出相應角的三角函數(shù)值,然后根據(jù)角的范圍確定角的具體取值. 題型2 求值 典例2 20xx安徽合肥質(zhì)檢]已知coscos=-,α∈. (1)求sin2α的值; (2)求tanα-的值. 解] (1)coscos=cossin=sin=-, 即sin=-. ∵α∈,∴2α+∈, ∴cos=-, ∴sin2α=sin=sincos-cossin=. (2)∵α∈,∴2α∈, 又由(1)知sin2α=,∴cos2α=- ∴tanα-
7、=-===-2=2. 化簡常用的方法技巧 (1)化簡常用方法:①直接應用公式,包括公式的正用、逆用和變形用;②切化弦、異名化同名、異角化同角等. (2)化簡常用技巧:①注意特殊角的三角函數(shù)與特殊值的互化;②注意利用角與角之間的隱含關系,如2α=(α+β)+(α-β),θ=(θ-φ)+φ等;③注意利用“1”的恒等變形,如tan45=1,sin2α+cos2α=1等. 考點 正、余弦定理 典例示法 題型1 應用正、余弦定理求邊、角 典例3 20xx淄博模擬]已知a,b,c分別為△ABC的內(nèi)角A,B,C的對邊,且acosC+asinC-b-c=0. (1)求A; (2
8、)若a=2,求△ABC面積的最大值. 解] (1)由acosC+asinC-b-c=0及正弦定理得sinAcosC+sinAsinC-sinB-sinC=0. 因為B=π-A-C,所以sinAsinC-cosAsinC-sinC=0. 易知sinC≠0,所以sinA-cosA=1, 所以sin=.又0<A<π,所以A=. (2)解法一:由(1)得B+C=?C=-B0<B<, 由正弦定理得====, 所以b=sinB,c=sinC. 所以S△ABC=bcsinA=sinBsinCsin=sinBsinC=sinBsin ==sin2B-cos2B+ =sin+.易知-<2B-
9、<, 故當2B-=,即B=時,S△ABC取得最大值,最大值為+=. 解法二:由(1)知A=,又a=2,由余弦定理得22=b2+c2-2bccos,即b2+c2-bc=4?bc+4=b2+c2≥2bc?bc≤4,當且僅當b=c=2時,等號成立. 所以S△ABC=bcsinA=bc≤4=, 即當b=c=2時,S△ABC取得最大值,最大值為. 解三角形問題,多為邊和角的求值問題,這就需要根據(jù)正、余弦定理結(jié)合已知條件靈活轉(zhuǎn)化邊和角之間的關系,從而達到解決問題的目的.其基本步驟是: 第一步:定條件 即確定三角形中的已知和所求,在圖形中標出來,然后確定轉(zhuǎn)化的方向. 第二步:定工具 即
10、根據(jù)條件和所求合理選擇轉(zhuǎn)化的工具,實施邊角之間的互化. 第三步:求結(jié)果. 題型2 判斷三角形的形狀 典例4 設△ABC的內(nèi)角,A,B,C所對的邊分別為a,b,c,若bcosC+ccosB=asinA,則△ABC的形狀為( ) A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不確定 解析] 由正弦定理得sinBcosC+sinCcosB=sin2A, ∴sin(B+C)=sin2A, 即sin(π-A)=sin2A,sinA=sin2A. ∵A∈(0,π),∴sinA>0,∴sinA=1,即A=,故選B. 答案] B 利用正、余弦定理判定三角形形狀的兩種
11、思路 (1)“角化邊”:利用正弦、余弦定理把已知條件轉(zhuǎn)化為只含邊的關系,通過因式分解、配方等得出邊的相應關系,從而判斷三角形的形狀. (2)“邊化角”:利用正弦、余弦定理把已知條件轉(zhuǎn)化為只含內(nèi)角的三角函數(shù)間的關系,通過三角函數(shù)恒等變形,得出內(nèi)角的關系,從而判斷出三角形的形狀,此時要注意應用A+B+C=π這個結(jié)論. 題型3 求有關三角形的面積 典例5 20xx浙江高考]在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知a≠b,c=,cos2A-cos2B=sinAcosA-sinBcosB. (1)求角C的大??; (2)若sinA=,求△ABC的面積. 解] (1)由題意
12、得-=sin2A-sin2B,即sin2A-cos2A=sin2B-cos2B, sin=sin. 由a≠b,得A≠B,又A+B∈(0,π), 得2A-+2B-=π, 即A+B=,所以C=. (2)由c=,sinA=,=,得a=. 由a<c,得A<C,從而cosA=, 故sinB=sin(A+C)=sinAcosC+cosAsinC=, 所以△ABC的面積為S=acsinB=. 與三角形面積有關問題的常見類型及解題策略 (1)求三角形的面積.對于面積公式S=absinC=acsinB=bcsinA,一般是已知哪一個角就使用含哪個角的公式. (2)已知三角形的面積解三角
13、形.與面積有關的問題,一般要利用正弦定理或余弦定理進行邊和角的互化. 考點 正、余弦定理的實際應用 典例示法 典例6 如圖,游客從某旅游景區(qū)的景點A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50 m/min.在甲出發(fā)2 min后,乙從A乘纜車到B,在B處停留1 min后,再從B勻速步行到C.假設纜車勻速直線運動的速度為130 m/min,山路AC長為1260 m,經(jīng)測量,cosA=,cosC=. (1)求索道AB的長; (2)問乙出發(fā)多少分鐘后,乙在纜車上與
14、甲的距離最短? (3)為使兩位游客在C處互相等待的時間不超過3分鐘,乙步行的速度應控制在什么范圍內(nèi)? 解] (1)在△ABC中,因為cosA=,cosC=,所以sinA=,sinC=. 從而sinB=sinπ-(A+C)]=sin(A+C)=sinAcosC+cosAsinC=+=.由正弦定理=,得AB=sinC==1040(m). 所以索道AB的長為1040 m. (2)假設乙出發(fā)t min后,甲、乙兩游客距離為d m,此時,甲行走了(100+50t) m,乙距離A處130t m,所以由余弦定理得d2=(100+50t)2+(130t)2-2130t(100+50t)=200(37
15、t2-70t+50),因0≤t≤,即0≤t≤8,故當t=時,d最小,所以乙出發(fā)分鐘后,甲、乙兩游客距離最短. (3)由正弦定理=,得BC=sinA==500(m). 乙從B出發(fā)時,甲已走了50(2+8+1)=550(m),還需走710 m才能到達C. 設乙步行的速度為v m/min,由題意得-3≤-≤3,解得≤v≤,所以為使兩位游客在C處互相等待的時 間不超過3 min,乙步行的速度應控制在(單位:m/min)范圍內(nèi). 1.解三角形應用題的常見情況及方法 (1)實際問題經(jīng)抽象概括后,已知量與未知量全部集中在一個三角形中,可用正弦定理或余弦定理求解. (2)實際問題經(jīng)抽象概括后
16、,已知量與未知量涉及兩個或兩個以上的三角形,這時需作出這些三角形,先解夠條件的三角形,然后逐步求解其他三角形,有時需設出未知量,從幾個三角形中列出方程(組),解方程(組)得出所要求的解. 2.解三角形應用題的一般步驟 針對訓練 20xx湖北高考]如圖,一輛汽車在一條水平的公路上向正西行駛,到A處時測得公路北側(cè)一山頂D在西偏北30的方向上,行駛600 m后到達B處,測得此山頂在西偏北75的方向上,仰角為30,則此山的高度CD=_______________________________________________ _________________________m. 答案
17、 100 解析 在△ABC中,∠BAC=30,∠BCA=75-30=45,所以由正弦定理得,BC=AB=600=600=300.在△BCD中,CD=BCtan30=300=100,故此山的高度為100 m. 全國卷高考真題調(diào)研] 1.20xx全國卷Ⅱ]若cos=,則sin2α=( ) A. B. C.- D.- 答案 D 解析 因為cos=coscosα+sinsinα=(sinα+cosα)=,所以sinα+cosα=,所以1+sin2α=,所以sin2α=-,故選D. 2.20xx全國卷Ⅰ]sin20cos10-cos160sin10=( ) A.
18、- B. C.- D. 答案 D 解析 原式=sin20cos10+cos20sin10=sin(20+10)=. 3.20xx全國卷Ⅰ]在平面四邊形ABCD中,∠A=∠B=∠C=75,BC=2,則AB的取值范圍是________. 答案 (-,+) 解析 如圖,作△PBC,使∠B=∠C=75,BC=2,作直線AD分別交線段PB、PC于A、D兩點(不與端點重合),且使∠BAD=75,則四邊形ABCD就是符合題意的四邊形.過C作AD的平行線交PB于點Q,在△PBC中,過P作BC的垂線交BC于點E,則PB==+;在△QBC中,由余弦定理QB2=BC2+QC2-2QCBCcos3
19、0=8-4=(-)2,故QB=-,所以AB的取值范圍是(-,+). 其它省市高考題借鑒] 4.20xx浙江高考]已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),則A=________,b=________. 答案 1 解析 由于2cos2x+sin2x=1+cos2x+sin2x=sin+1,所以A=,b=1. 5.20xx廣東高考]設△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.若a=,sinB=,C=,則b=________. 答案 1 解析 由sinB=得B=或,因為C=,所以B≠,所以B=,于是A=.由正弦定理,得=,所以b=1. 6.20xx
20、山東高考]設f(x)=sinxcosx-cos2. (1)求f(x)的單調(diào)區(qū)間; (2)在銳角△ABC中,角A,B,C的對邊分別為a,b,c.若f=0,a=1,求△ABC面積的最大值. 解 (1)由題意知f(x)=- =-=sin2x-. 由-+2kπ≤2x≤+2kπ,k∈Z,可得-+kπ≤x≤+kπ,k∈Z; 由+2kπ≤2x≤+2kπ,k∈Z,可得+kπ≤x≤+kπ,k∈Z. 所以f(x)的單調(diào)遞增區(qū)間是(k∈Z); 單調(diào)遞減區(qū)間是(k∈Z). (2)由f=sinA-=0,得sinA=, 由題意知A為銳角,所以cosA=. 由余弦定理a2=b2+c2-2bccosA,
21、 可得1+bc=b2+c2≥2bc, 即bc≤2+,且當b=c時等號成立. 因此bcsinA≤. 所以△ABC面積的最大值為. 一、選擇題 1.20xx合肥質(zhì)檢]sin18sin78-cos162cos78=( ) A.- B.- C. D. 答案 D 解析 sin18sin78-cos162cos78=sin18sin78+cos18cos78=cos(78-18)=cos60=,故選D. 2.20xx廣西質(zhì)檢]已知<α<π,3sin2α=2cosα,則cos(α-π)等于( ) A. B. C. D. 答案 C 解析 由3sin2α=
22、2cosα得sinα=.因為<α<π,所以cos(α-π)=-cosα= =. 3.20xx鄭州質(zhì)檢]在△ABC中,角A,B,C所對的邊分別為a,b,c,若=,則cosB=( ) A.- B. C.- D. 答案 B 解析 由正弦定理知==1,即tanB=,所以B=,所以cosB=cos=,故選B. 4.20xx武漢調(diào)研]據(jù)氣象部門預報,在距離某碼頭正西方向400 km處的熱帶風暴中心正以20 km/h的速度向東北方向移動,距風暴中心300 km以內(nèi)的地區(qū)為危險區(qū),則該碼頭處于危險區(qū)內(nèi)的時間為( ) A.9 h B.10 h C.11 h D.12 h 答
23、案 B 解析 記碼頭為點O,熱帶風暴中心的位置為點A,t小時后熱帶風暴到達B點位置,在△OAB中,OA=400,AB=20t,∠OAB=45,根據(jù)余弦定理得4002+400t2-220t400≤3002,即t2-20t+175≤0,解得10-5≤t≤10+5,所以所求時間為10+5-10+5=10(h),故選B. 5.20xx云南統(tǒng)測]已知△ABC的內(nèi)角A、B、C對的邊分別為a、b、c,sinA+sinB=2sinC,b=3,當內(nèi)角C最大時,△ABC的面積等于( ) A. B. C. D. 答案 A 解析 根據(jù)正弦定理及sinA+sinB=2sinC得a+b=2c,c=,
24、cosC===+-≥2-=,當且僅當=,即a=時,等號成立,此時sinC=,S△ABC=absinC=3=. 6.20xx鄭州質(zhì)量預測]在△ABC中,角A,B,C所對的邊分別是a,b,c,已知sin(B+A)+sin(B-A)=3sin2A,且c=,C=,則△ABC的面積是( ) A. B. C. D.或 答案 D 解析 sin(B+A)=sinBcosA+cosBsinA,sin(B-A)=sinBcosA-cosBsinA,sin2A=2sinAcosA,sin(B+A)+sin(B-A)=3sin2A,即2sinBcosA=6sinAcosA.當cosA=0時,A=,
25、B=,又c=,得b=.由三角形面積公式知S=bc=;當cosA≠0時,由2sinBcosA=6sinAcosA可得sinB=3sinA,根據(jù)正弦定理可知b=3a,再由余弦定理可知cosC===cos=,可得a=1,b=3,所以此時三角形的面積為S=absinC=.綜上可得三角形的面積為或,所以選D. 二、填空題 7.已知tanα,tanβ是lg (6x2-5x+2)=0的兩個實根,則tan(α+β)=________. 答案 1 解析 lg (6x2-5x+2)=0?6x2-5x+1=0,∴tanα+tanβ=,tanαtanβ=,∴tan(α+β)===1. 8.20xx貴陽監(jiān)測]
26、在△ABC中,內(nèi)角A、B、C所對邊分別是a、b、c,若sin2=,則△ABC的形狀一定是________. 答案 直角三角形 解析 由題意,得=,即cosB=,又由余弦定理,得=,整理,得a2+b2=c2,所以△ABC為直角三角形. 9.20xx西安質(zhì)檢]已知△ABC的三邊a,b,c所對的角分別為A,B,C,且a∶b∶c=7∶5∶3,若△ABC的面積為45,則△ABC外接圓的半徑為________. 答案 14 解析 因為a∶b∶c=7∶5∶3,所以可設a=7k,b=5k,c=3k(k>0),由余弦定理得,cosA===-.因為A是△ABC的內(nèi)角,所以sinA==,因為△ABC的面積
27、為45,所以bcsinA=45,即5k3k=45,解得k=2.由正弦定理=2R(R為△ABC外接圓的半徑),即2R==,解得R=14,所以△ABC外接圓半徑為14. 三、解答題 10.20xx重慶測試]在銳角△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且2cos2+sin2A=1. (1)求A; (2)設a=2-2,△ABC的面積為2,求b+c的值. 解 (1)由2cos2+sin2A=1可得,2+2sinAcosA=1, 所以1+cos(π-A)+2sinAcosA=1,故2sinAcosA-cosA=0. 因為△ABC為銳角三角形,所以cosA≠0,故sinA=, 從
28、而A=. (2)因為△ABC的面積為bcsinA=bc=2,所以bc=8. 因為A=,故cosA=,由余弦定理可知,b2+c2-a2=2bccosA=bc. 又a=2-2,所以(b+c)2=b2+c2+2bc=(2+)bc+a2=8(2+)+(2-2)2=32. 故b+c==4. 11.20xx武漢調(diào)研]在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知cos2B+cosB=1-cosAcosC. (1)求證:a,b,c成等比數(shù)列; (2)若b=2,求△ABC的面積的最大值. 解 (1)證明:在△ABC中,cosB=-cos(A+C). 由已知,得(1-sin2B)-
29、cos(A+C)=1-cosAcosC, ∴-sin2B-(cosAcosC-sinAsinC)=-cosAcosC, 化簡,得sin2B=sinAsinC.由正弦定理,得b2=ac, ∴a,b,c成等比數(shù)列. (2)由(1)及題設條件,得ac=4. 則cosB==≥=, 當且僅當a=c時,等號成立. ∵0
30、2a-c)cosB=bcosC,求f(2A)的取值范圍. 解 (1)f(x)=mn=sincos+cos2 =sin+cos+=sin+, 因為f(x)=1,所以sin=, 所以cos=1-2sin2=. (2)因為(2a-c)cosB=bcosC, 由正弦定理得(2sinA-sinC)cosB=sinBcosC, 所以2sinAcosB-sinCcosB=sinBcosC, 所以2sinAcosB=sin(B+C). 因為A+B+C=π,所以sin(B+C)=sinA,且sinA≠0, 所以cosB=,又0
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習題含答案
- 2煤礦安全監(jiān)測工種技術比武題庫含解析
- 1 礦山應急救援安全知識競賽試題
- 1 礦井泵工考試練習題含答案
- 2煤礦爆破工考試復習題含答案
- 1 各種煤礦安全考試試題含答案