高中數(shù)學(xué)人教B版必修5同步練習:第1章 解三角形1.1 第2課時 Word版含解析

上傳人:仙*** 文檔編號:62809889 上傳時間:2022-03-16 格式:DOC 頁數(shù):8 大?。?67.50KB
收藏 版權(quán)申訴 舉報 下載
高中數(shù)學(xué)人教B版必修5同步練習:第1章 解三角形1.1 第2課時 Word版含解析_第1頁
第1頁 / 共8頁
高中數(shù)學(xué)人教B版必修5同步練習:第1章 解三角形1.1 第2課時 Word版含解析_第2頁
第2頁 / 共8頁
高中數(shù)學(xué)人教B版必修5同步練習:第1章 解三角形1.1 第2課時 Word版含解析_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué)人教B版必修5同步練習:第1章 解三角形1.1 第2課時 Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)人教B版必修5同步練習:第1章 解三角形1.1 第2課時 Word版含解析(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第一章 1.1 第2課時 一、選擇題 1.在△ABC中,b=5,c=5,A=30°,則a等于(  ) A.5  B.4 C.3  D.10 [答案] A [解析] 由余弦定理,得a2=b2+c2-2bccosA, ∴a2=52+(5)2-2×5×5×cos30°, ∴a2=25,∴a=5. 2.在△ABC中,已知a2=b2+c2+bc,則角A等于(  ) A.  B. C.  D.或 [答案] C [解析] ∵a2=b2+c2+bc, ∴cosA===-, 又∵0

2、BC的面積是,AB=1,BC=,則AC=(  ) A.5  B. C.2  D.1 [答案] B [解析] 本題考查余弦定理及三角形的面積公式. ∵S△ABC=acsinB=××1×sinB=, ∴sinB=, ∴B=或.當B=時,經(jīng)計算△ABC為等腰直角三角形,不符合題意,舍去. 當B=時,由余弦定理,得b2=a2+c2-2accosB,解得b=,故選B. 4.(2014·江西理,4)在△ABC中,內(nèi)角A、B、C所對應(yīng)的邊分別為a、b、c,若c2=(a-b)2+6,C=,則△ABC的面積是(  ) A.3  B. C.  D.3 [答案] C [解析] 本題考查正弦

3、、余弦定理及三角形的面積公式. 由題設(shè)條件得a2+b2-c2=2ab-6,由余弦定理得a2+b2-c2=ab, ∴ab=6,∴S△ABC=absin=×6×=.選C. 5.△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,若a、b、c滿足b2=ac,且c=2a,則cosB=(  ) A.  B. C.  D. [答案] B [解析] 由b2=ac,又c=2a,由余弦定理,得cosB===. 6.(2015·廣東文,5)設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c.若a=2,c=2,cos A=,且b<c,則b=(  ) A.3  B.2 C.2  D. [答案] C

4、[解析] 由余弦定理,得a2=b2+c2-2bccosA, ∴4=b2+12-6b,即b2-6b+8=0, ∴b=2或b=4.又∵b0,因此0°<α<90°. 8.若2、3、x為三邊組成一個銳角三角形,則x的取值范圍為________. [答案] (,) [解析] 長為3的邊所對的角為銳角時,x2+4-9>0,∴x>, 長為x的邊所對的角為銳角時,4+9-x2>

5、0,∴x<, ∴

6、×15×=19. ∴b=. 10.在△ABC中,已知sinC=,a=2,b=2,求邊c. [解析] ∵sinC=,且0

7、°,b2=ac,則這個三角形是(  ) A.不等邊三角形  B.等邊三角形 C.等腰三角形  D.直角三角形 [答案] B [解析] 由余弦定理,得 cosB===, 則(a-c)2=0,∴a=c,又∠B=60°, ∴△ABC為等邊三角形. 3.在△ABC中,三邊長AB=7,BC=5,AC=6,則·等于(  ) A.19  B.-14 C.-18  D.-19 [答案] D [解析] 在△ABC中AB=7,BC=5,AC=6, 則cosB==. 又·=||·||cos(π-B) =-||·||cosB =-7×5×=-19. 4.△ABC的三內(nèi)角A、B、C所對

8、邊的長分別為a、b、c,設(shè)向量p=(a+c,b),q=(b-a,c-a),若p∥q,則C的大小為(  ) A.  B. C.  D. [答案] B [解析] ∵p=(a+c,b),q=(b-a,c-a),p∥q, ∴(a+c)(c-a)-b(b-a)=0, 即a2+b2-c2=ab. 由余弦定理,得cosC===, ∵0

9、2b,又∵a=2,∴b=3. 由余弦定理,得c2=a2+b2-2abcosC, ∴c2=22+32-2×2×3×(-)=16, ∴c=4. 6.如圖,在△ABC中,∠BAC=120°,AB=2,AC=1,D是邊BC上一點,DC=2BD,則·=________. [答案]?。? [解析] 由余弦定理,得 BC2=22+12-2×2×1×(-)=7,∴BC=, ∴cosB==. ∴·=(+)· =·+· =-2××+××1=-. 三、解答題 7.已知圓內(nèi)接四邊形ABCD的邊長分別為AB=2,BC=6,CD=DA=4,求四邊形ABCD的面積. [解析] 如圖,連結(jié)AC.

10、 ∵B+D=180°,∴sinB=sinD. S四邊形ABCD=S△ABC+S△ACD=AB·BC·sinB+AD·DC·sinD=14sinB. 由余弦定理,得AB2+BC2-2AB·BC·cosB=AD2+DC2-2AD·DC·cosD, 即40-24cosB=32-32cosD. 又cosB=-cosD, ∴56cosB=8,cosB=. ∵0°

11、. [解析] (1)由余弦定理,得b2=a2+c2-2accosB得, b2=(a+c)2-2ac(1+cosB), 又已知a+c=6,b=2,cosB=,∴ac=9. 由a+c=6,ac=9,解得a=3,c=3. (2)在△ABC中,∵cosB=, ∴sinB==. 由正弦定理,得sinA==, ∵a=c,∴A為銳角,∴cosA==. ∴sin(A-B)=sinAcosB-cosAsinB=×-×=. 9.在△ABC中,角A、B、C所對邊分別為a、b、c且a=3,C=60°,△ABC的面積為,求邊長b和c. [解析] ∵S△ABC=absinC, ∴=×3b×sin60°=×3b×, ∴b=2. 由余弦定理,得c2=a2+b2-2abcosC =9+4-2×3×2×cos60° =9+4-2×3×2×=7, ∴c=. 最新精品資料

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!