《高等數(shù)學(xué):第四章 第三節(jié) 分部積分(1)》由會員分享,可在線閱讀,更多相關(guān)《高等數(shù)學(xué):第四章 第三節(jié) 分部積分(1)(21頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、第三節(jié):第三節(jié): 分部積分法分部積分法設(shè)設(shè) u = u (x) , v = v (x) 具有連續(xù)導(dǎo)數(shù),則有具有連續(xù)導(dǎo)數(shù),則有(),u vu vu v()u v d xu vd xu v d xu d vu vv d u(),u vu vu vu vu v d x udvvuvdu例例1:求:求 xdxxcos解:解:分部積分法的關(guān)鍵是正確選擇分部積分法的關(guān)鍵是正確選擇 u 和和 d v若選若選 u = x , cosxxdxsinsinxxxd xsincosxxx cd v = cos x d x , 則則但若選但若選 u = cos x , d v = x d x , 則則cosxxdx2
2、cos2xx2cos2xdxsinx dx2cos2xx d?2cos2xx2sin2xxd x選取選取 u 和和 d v 時一般要考慮下面兩點:時一般要考慮下面兩點:(1)v 要容易求出;要容易求出;(2)v d uu d v要比要比容易積出。容易積出。 udvvuvdu例例2:求:求2xx ed x解:取解:取 2,ux2xx ed x2xx d e22xxx ee d x22xxx exe dx22xxx exde22 ()xxxx ex ee d x222xxxx exeecxdved x udvvuvdu,xu e若取2xx ed x33xxe?2dvx d x33xxed33xxd
3、 e33xxe33xxe dx若被積函數(shù)是冪函數(shù)(指數(shù)為正整數(shù))與正若被積函數(shù)是冪函數(shù)(指數(shù)為正整數(shù))與正(余)弦函數(shù)的乘積或是冪函數(shù)與指數(shù)函數(shù)的(余)弦函數(shù)的乘積或是冪函數(shù)與指數(shù)函數(shù)的乘積時,應(yīng)考慮用分部積分,并取冪函數(shù)為乘積時,應(yīng)考慮用分部積分,并取冪函數(shù)為 u .例例4:求:求lnxx d x解:解:2ln2xxdlnxxd x2ln2xx221ln22xxxd xx22ln24xxxc例例5:arccos xd xarccosxx2arccos1xxxd xx2211arccos(1)21xxdxx2arccos1xxxc2(ln)2xdx(arccos )xdx Cuudu21例例6
4、:tanx arcxd x2tan2xarcxd2arctan2xx2221arctan221xxxd xx2211arctan(1)221xxd xx21arctan(arctan )22xxxxc21arctan22xxxc若被積函數(shù)是冪函數(shù)(指數(shù)為正整數(shù))與對數(shù)若被積函數(shù)是冪函數(shù)(指數(shù)為正整數(shù))與對數(shù)函數(shù)的乘積或是冪函數(shù)與反三角函數(shù)的乘積時函數(shù)的乘積或是冪函數(shù)與反三角函數(shù)的乘積時,應(yīng)考慮用分部積分,并取對數(shù)函數(shù)或反三角,應(yīng)考慮用分部積分,并取對數(shù)函數(shù)或反三角函數(shù)為函數(shù)為 u .2(arctan)2xdx例例7:3sec xd x2secsecxxd xsec(tan )x dxsecta
5、nxxsectantansectanxxxxxd x2sectansec(sec1)xxxxd x3sectansecsecxxxd xxd x3sectanln|sectan|secxxxxxd xcxxxdx |tansec|lnsec31sec(sectanln|sectan|)2xd xxxxxc類似地積分類似地積分sinxexd xcosxexd xtan(sec )x dxsin (ln)x d x2ln1xd xx例例8:求不定積分求不定積分解:解:2ln1xd xx1(ln1)xdx ln1(xx 1(ln1) )dxxln1xx 11d xxxln1xx 1cxln xcx
6、xed x例例9:解:解:,ux令2,xuxed x2ueudu2(1)uuec2(1)xxec2uude2()uuuee d u在積分過程中,幾種方法往往兼用。在積分過程中,幾種方法往往兼用。2d xudu2()uuueecarcsinxd xx例例10:求不定積分求不定積分解:解:arcsinxd xxarcsin2xdx2(arcsinuuarcsin)udu2arcsinuxu du2(arcsinuu2)1uduu2(arcsinuu2211)21duu2(arcsinuu2211(1) )21duu2(arcsinuu2(arcsinuu2211(1) )21duu21)uccxx
7、dx 212(arcsinxx1)xcarcsinxd xx例例10:求不定積分求不定積分解:解:arcsinxd xxarcsin2xdx2(arcsinuuarcsin)udu2arcsinuxu du22arctan(1)xd xxx例例11:求不定積分求不定積分解:為去反三角函數(shù),作代換解:為去反三角函數(shù),作代換arctanuxtan,xu2sec,d xudu代入原式得代入原式得22arctan(1)xd xxx222sectan(1 tan)uuduuu2tanuduu2cotuu du2(csc1)uudu2cscuu duu ducotudu 22u(cotuu cot)udu
8、22u(cotuu ln|sin| )u22ucux121x arctan xx 2ln|1xx21arctan2xc22arctan(1)xd xxx例例11:求不定積分求不定積分解:為去反三角函數(shù),作代換解:為去反三角函數(shù),作代換arctanuxtan,xu2sec,d xudu代入原式得代入原式得22arctan(1)xd xxx222sectan(1 tan)uuduuu(cotuu cot)udu22u22(tan1)xexd x例例12:求不定積分求不定積分解:解:22(tan1)xexd x22(tan2tan1)xexxd x22(sec2tan)xexx d x22secxe
9、x d x22tanxex d x2tanxedx22tanxex d x2tanxex2tanxx de22tanxex d x2tanxex2tan2xxed x22tanxex d x2tanxexc22(tan1)xexd x例例12:求不定積分求不定積分解:解:22(tan1)xexd x2tanxex2tanxx de22tanxex d x解解( )xfx dx( )xdf x( )( ),xf xf x dx2( ),xf x dxeC ),()(xfdxxf 兩邊同時對兩邊同時對 x 求導(dǎo)求導(dǎo), 得得2( )2,xf xxe ( )xfx dx( )( )xf xf x dx
10、222xx e 2.xeC由已知條件可得由已知條件可得sinnx d x例例14:求不定積分求不定積分解:記解:記sinnnIx d x1sincosnx dx 1sincosnxx 1cos(sin)nxdx1sincosnxx dxxxnxdxnxdnnncossin)1()(sinsin)1()(sin221 22(1)cossinnnxxdx22(1) (1 sin)sinnnxxdx1sincosnxx 1sincosnxx 2(1) sinnnxdx(1) sinnnxdx1sincosnxx 2(1)nnI(1)nnI1sincosnnnIxx 2(1)nnI1211sincos
11、nnnnIxxInn dxxnnxxndxxnnn21sin1cossin1sinsinnx d x例例14:求不定積分求不定積分解:記解:記sinnnIx d x1sincosnx dx 1sincosnxx 2(1)nnI(1)nnI6sin x d x51sincos6xx 45sin6x d x51sincos6xx32513(sincossin)644xxxdx51sincos6xx 35sincos24xx25sin8xdx51sincos6xx35sincos24xx516xC5sin232x1211sinsincossinnnnnxdxxxxdxnn xdx2sincxx 42sin2 dxx22cos1作業(yè):作業(yè):習(xí)題習(xí)題4 3: 1(1, 2, 4, 8, 11, 14, 16, 20, 22) , 4