2018年高考數(shù)學 專題13 坐標系與參數(shù)方程教學案 文

上傳人:彩*** 文檔編號:104637360 上傳時間:2022-06-10 格式:DOC 頁數(shù):9 大?。?89KB
收藏 版權(quán)申訴 舉報 下載
2018年高考數(shù)學 專題13 坐標系與參數(shù)方程教學案 文_第1頁
第1頁 / 共9頁
2018年高考數(shù)學 專題13 坐標系與參數(shù)方程教學案 文_第2頁
第2頁 / 共9頁
2018年高考數(shù)學 專題13 坐標系與參數(shù)方程教學案 文_第3頁
第3頁 / 共9頁

下載文檔到電腦,查找使用更方便

18 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2018年高考數(shù)學 專題13 坐標系與參數(shù)方程教學案 文》由會員分享,可在線閱讀,更多相關(guān)《2018年高考數(shù)學 專題13 坐標系與參數(shù)方程教學案 文(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 專題13 坐標系與參數(shù)方程 【2018年高考考綱解讀】 高考對本內(nèi)容的考查主要有: (1)直線、曲線的極坐標方程; (2)直線、曲線的參數(shù)方程; (3)參數(shù)方程與普通方程的互化; (4)極坐標與直角坐標的互化 ,本內(nèi)容的考查要求為B級. 【重點、難點剖析】 1.直角坐標與極坐標的互化 把直角坐標系的原點作為極點,x軸正半軸作為極軸,且在兩坐標系中取相同的長度單位.設(shè)M是平面內(nèi)的任意一點,它的直角坐標、極坐標分別為(x,y)和(ρ,θ),則 2.直線的極坐標方程 若直線過點M(ρ0,θ0),且極軸到此直線的角為α,則它的方程為:ρsin(θ-α)=ρ0sin(θ0-

2、α). 幾個特殊位置的直線的極坐標方程 (1)直線過極點:θ=α; (2)直線過點M(a,0)(a>0)且垂直于極軸:ρcos θ=a; (3)直線過M且平行于極軸:ρsin θ=b. 3.圓的極坐標方程 若圓心為M(ρ0,θ0),半徑為r的圓方程為: ρ2-2ρ0ρcos(θ-θ0)+ρ0-r2=0. 幾個特殊位置的圓的極坐標方程 (1)當圓心位于極點,半徑為r:ρ=r; (2)當圓心位于M(r,0),半徑為r:ρ=2rcos θ; (3)當圓心位于M,半徑為r:ρ=2rsin θ. (4)圓心在點M(x0,y0),半徑為r的圓的參數(shù)方程為(θ為參數(shù),0≤θ≤2π).

3、圓心在點A(ρ0,θ0),半徑為r的圓的方程為r2=ρ2+ρ0-2ρρ0cos(θ-θ0). 4.直線的參數(shù)方程 經(jīng)過點P0(x0,y0),傾斜角為α的直線的參數(shù)方程為(t為參數(shù)). 設(shè)P是直線上的任一點,則t表示有向線段的數(shù)量. 5.圓的參數(shù)方程 圓心在點M(x0,y0),半徑為r的圓的參數(shù)方程為(θ為參數(shù),0≤θ≤2π). 6.圓錐曲線的參數(shù)方程 (1)橢圓+=1的參數(shù)方程為(θ為參數(shù)). (2)雙曲線-=1的參數(shù)方程為(θ為參數(shù)). (3)拋物線y2=2px(p>0)的參數(shù)方程為(t為參數(shù)). 【題型示例】 題型一 極坐標 【例1】【2017課標3,文22】在

4、直角坐標系xOy中,直線的參數(shù)方程為(t為參數(shù)),直線的參數(shù)方程為.設(shè)l1與l2的交點為P,當k變化時,P的軌跡為曲線C. (1)寫出C的普通方程; (2)以坐標原點為極點,x軸正半軸為極軸建立極坐標系,設(shè)l3:ρ(cosθ+sinθ)?=0,M為l3與C的交點,求M的極徑. 【答案】(1);(2) 【變式探究】【2016年高考北京文數(shù)】在極坐標系中,直線與圓交于A,B兩點,則______. 【答案】2 【解析】直線過圓的圓心,因此 【變式探究】在極坐標系中,圓ρ=2cos θ的垂直于極軸的兩條切線方程分別為(  ) A.θ=0(ρ∈R)和ρcos θ=2 B.θ=(ρ∈

5、R)和ρcos θ=2 C.θ=(ρ∈R)和ρcos θ=1 D.θ=0(ρ∈R)和ρcos θ=1 解析 由ρ=2cos θ得x2+y2-2x=0. ∴(x-1)2+y2=1, 圓的兩條垂直于x軸的切線方程為x=0和x=2. 故極坐標方程為θ=(ρ∈R)和ρcos θ=2,故選B. 答案 B 【變式探究】(2015·廣東,14)(坐標系與參數(shù)方程選做題)在平面直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標系.曲線C1的極坐標方程為ρ(cos θ+sin θ)=-2,曲線C2的參數(shù)方程為(t為參數(shù)),則C1與C2交點的直角坐標為________. 解析 ∵曲

6、線C1的極坐標方程為ρ(cos θ+sin θ)=-2,∴曲線C1的直角坐標方程為x+y=-2.曲線C2的參數(shù)方程為(t為參數(shù)),則其直角坐標方程為y2=8x,聯(lián)立解得x=2,y=-4,即C1,C2的交點坐標為(2,-4). 答案 (2,-4) 【舉一反三】(2015·安徽,12)在極坐標系中,圓ρ=8sin θ上的點到直線θ=(ρ∈R)距離的最大值是________. 解析 由ρ=8sin θ得x2+y2=8y,即x2+(y-4)2=16,由θ=得y=x,即x-y=0,∴圓心(0,4)到直線y=x的距離為2,圓ρ=8sin θ上的點到直線θ=的最大距離為4+2=6. 答案 6 【變

7、式探究】(2015·新課標全國Ⅰ,23)在直角坐標系xOy中,直線C1:x=-2,圓C2:(x-1) 2+(y-2)2=1,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系. (1)求C1,C2的極坐標方程. (2)若直線C3的極坐標方程為θ=(ρ∈R),設(shè)C2與C3的交點為M,N,求△C2MN的面積. 【舉一反三】(2015·江蘇。21(C))已知圓C的極坐標方程為ρ2+2ρsin-4=0,求圓C的半徑. 解 以極坐標系的極點為平面直角坐標系的原點O,以極軸為x軸的正半軸,建立直角坐標系xOy. 圓C的極坐標方程為 ρ2+2ρ-4=0, 化簡,得ρ2+2ρsin θ-2ρc

8、os θ-4=0. 則圓C的直角坐標方程為x2+y2-2x+2y-4=0, 即(x-1)2+(y+1)2=6,所以圓C的半徑為. 題型二 參數(shù)方程及其應(yīng)用 【例3】【2017課標1,文22】在直角坐標系xOy中,曲線C的參數(shù)方程為(θ為參數(shù)),直線l的參數(shù)方程為 . (1)若,求C與l的交點坐標; (2)若C上的點到l的距離的最大值為,求. 【答案】(1),;(2)或. 當時, 的最大值為.由題設(shè)得,所以; 當時, 的最大值為.由題設(shè)得,所以. 綜上, 或. 【變式探究】【2016高考新課標1卷】(本小題滿分10分)選修4—4:坐標系與參數(shù)方程 在直角坐標系xy中

9、,曲線C1的參數(shù)方程為(t為參數(shù),a>0). 在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=. (I)說明C1是哪一種曲線,并將C1的方程化為極坐標方程; (II)直線C3的極坐標方程為,其中滿足tan=2,若曲線C1與C2的公共點都在C3上,求a. 【答案】(I)圓,(II)1 【變式探究】 (2015·重慶,15)已知直線l的參數(shù)方程為(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ2cos 2θ=4,則直線l與曲線C的交點的極坐標為________. 解析 直線l的直角坐標方程為y=x+2,由ρ2cos 2θ=4得ρ

10、2(cos2θ-sin2θ)=4,直角坐標方程為x2-y2=4,把y=x+2代入雙曲線方程解得x=-2,因此交點為(-2,0),其極坐標為(2,π). 答案 (2,π) 【變式探究】(2014·福建)已知直線l的參數(shù)方程為(t為參數(shù)),圓C的參數(shù)方程為 (θ為參數(shù)). (1)求直線l和圓C的普通方程; (2)若直線l與圓C有公共點,求實數(shù)a的取值范圍. 【命題意圖】本小題主要考查直線與圓的參數(shù)方程等基礎(chǔ)知識,意在考查考生的運算求解能力及化歸與轉(zhuǎn)化思想. 【解題思路】(1)消去參數(shù),即可求出直線l與圓C的普通方程. (2)求出圓心的坐標,利用圓心到直線l的距離不大于半徑,得到關(guān)于

11、參數(shù)a的不等式,即可求出參數(shù)a的取值范圍. 【感悟提升】 1.將參數(shù)方程化為普通方程的過程就是消去參數(shù)的過程,常用的消參方法有代入消參、加減消參和三角恒等式消參等,往往需要對參數(shù)方程進行變形,為消去參數(shù)創(chuàng)造條件. 2.在與直線、圓、橢圓有關(guān)的題目中,參數(shù)方程的使用會使問題的解決事半功倍,尤其是求取值范圍和最值問題,可將參數(shù)方程代入相關(guān)曲線的普通方程中,根據(jù)參數(shù)的取值條件求解. 【變式探究】(2015·福建,21(2))在平面直角坐標系xOy中,圓C的參數(shù)方程為 (t為參數(shù)).在極坐標系(與平面直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸非負半軸為極軸)中,直線l的方程

12、為ρsin=m(m∈R). ①求圓C的普通方程及直線l的直角坐標方程; ②設(shè)圓心C到直線l的距離等于2,求m的值. 【舉一反三】(2015·湖南,16Ⅱ)已知直線l:(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=2cos θ. (1)將曲線C的極坐標方程化為直角坐標方程; (2)設(shè)點M的直角坐標為(5,),直線l與曲線C的交點為A,B,求|MA|·|MB|的值. 解 (1)ρ=2cos θ等價于ρ2=2ρcos θ.① 將ρ2=x2+y2,ρcos θ=x代入①即得曲線C的直角坐標方程為x2+y2-2x=0.② (2)將代入②式,得t2+5t+18=0. 設(shè)這個方程的兩個實根分別為t1,t2,則由參數(shù)t的幾何意義即知, |MA|·|MB|=|t1t2|=18. 9

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!