(全國通用版)2022高考數學二輪復習 中檔大題規(guī)范練(六)不等式選講 理

上傳人:xt****7 文檔編號:107770194 上傳時間:2022-06-15 格式:DOC 頁數:4 大?。?0KB
收藏 版權申訴 舉報 下載
(全國通用版)2022高考數學二輪復習 中檔大題規(guī)范練(六)不等式選講 理_第1頁
第1頁 / 共4頁
(全國通用版)2022高考數學二輪復習 中檔大題規(guī)范練(六)不等式選講 理_第2頁
第2頁 / 共4頁
(全國通用版)2022高考數學二輪復習 中檔大題規(guī)范練(六)不等式選講 理_第3頁
第3頁 / 共4頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(全國通用版)2022高考數學二輪復習 中檔大題規(guī)范練(六)不等式選講 理》由會員分享,可在線閱讀,更多相關《(全國通用版)2022高考數學二輪復習 中檔大題規(guī)范練(六)不等式選講 理(4頁珍藏版)》請在裝配圖網上搜索。

1、(全國通用版)2022高考數學二輪復習 中檔大題規(guī)范練(六)不等式選講 理 1.(2018·福建省百校模擬)已知函數f(x)=|x-a|-|x-1|. (1)當a=2時,求不等式00,得|x-2|>|x-1|, 則|x-2|2>|x-1|2, 即x2-4x+4>x2-2x+1, 解得x<. 故不等式0

2、(0,+∞)時, f(x)=x-a-|x-1|= 則f(x)max=1-a≤a2-3, 又a≤0,所以a≤-; 當00>a2-3, 故0

3、|a+b|-|a-b|≥f(x)對?x∈R恒成立,求a的取值范圍. 解 (1)f(x)= 原不等式等價于 或或 解得x≤-1或-≤x<2或x≥2, 綜上所述,不等式的解集是. (2)?b∈R,|a+b|-|a-b|≥f(x)對?x∈R恒成立等價于 (|a+b|-|a-b|)max≥f(x)max. 因為|a+b|-|a-b|≤|(a+b)+(a-b)|=2|a|, 所以|a+b|-|a-b|的最大值為2|a|; 當x≤-時,f(x)≤; 當-

4、解得a≥或a≤-. 即a的取值范圍是∪. 3.(2018·咸陽模擬)已知函數f(x)=|2x+1|(x∈R). (1)解不等式f(x)≤1; (2)設函數g(x)=f(x)+f(x-1)的最小值為m,且a+b=m(a,b>0),求+的取值范圍. 解 (1)由f(x)≤1, 即|2x+1|≤1,得-1≤2x+1≤1, 解得x∈[-1,0]. 即不等式的解集為{x|-1≤x≤0}. (2)g(x)=f(x)+f(x-1)=|2x+1|+|2x-1| ≥|2x+1-(2x-1)|=2, 當且僅當(2x+1)(2x-1)≤0, 即-≤x≤時取等號, ∴m=2. ∴a+b=2

5、(a,b>0), ∴+=(a+b)= ≥=, 當且僅當即a=,b=時等號成立, 綜上,+的取值范圍為. 4.(2018·廣州模擬)已知函數f(x)=3|x-a|+|3x+1|,g(x)=|4x-1|-|x+2|. (1)求不等式g(x)<6的解集; (2)若存在x1,x2∈R,使得f(x1)和g(x2)互為相反數,求a的取值范圍. 解 (1)由題意可得g(x)= 當x≤-2時,g(x)=-3x+3<6,得x>-1,無解; 當-2-, 即-

6、集為. (2)因為存在x1,x2∈R,使得f(x1)=-g(x2)成立, 所以{y|y=f(x),x∈R}∩{y|y=-g(x),x∈R}≠?, 又f(x)=3|x-a|+|3x+1| ≥|(3x-3a)-(3x+1)|=|3a+1|, 當且僅當(3x-3a)(3x+1)≤0時取等號. 由(1)可知,g(x)∈, 則-g(x)∈, 所以|3a+1|≤,解得-≤a≤. 故a的取值范圍為. 5.(2018·濰坊模擬)已知函數f(x)=|x+4|,不等式f(x)>8-|2x-2|的解集為M. (1)求M; (2)設a,b∈M,證明:f(ab)>f(2a)-f(-2b). (

7、1)解 將f(x)=|x+4|代入不等式, 整理得|x+4|+|2x-2|>8. ①當x≤-4時,不等式轉化為-x-4-2x+2>8, 解得x<-,所以x≤-4; ②當-48, 解得x<-2,所以-48, 解得x>2,所以x>2. 綜上,M={x|x<-2或x>2}. (2)證明 因為f(2a)-f(-2b)=|2a+4|-|-2b+4|≤|2a+4+2b-4|=|2a+2b|, 所以要證f(ab)>f(2a)-f(-2b), 只需證|ab+4|>|2a+2b|, 即證(ab+4)2>(2a+2b)2, 即證a2b2+8ab+16>4a2+8ab+4b2, 即證a2b2-4a2-4b2+16>0, 即證(a2-4)(b2-4)>0, 因為a,b∈M,所以a2>4,b2>4, 所以(a2-4)(b2-4)>0成立, 所以原不等式成立.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!