《高中數(shù)學(xué) 《直線與平面平行的判定》教案2 新人教A版必修2》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 《直線與平面平行的判定》教案2 新人教A版必修2(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、直線與平面平行的判定
一、教學(xué)內(nèi)容分析:
本節(jié)教材選自人教A版數(shù)學(xué)必修②第二章第一節(jié)課,本節(jié)內(nèi)容在立幾學(xué)習(xí)中起著承上啟下的作用,具有重要的意義與地位。本節(jié)課是在前面已學(xué)空間點(diǎn)、線、面位置關(guān)系的基礎(chǔ)作為學(xué)習(xí)的出發(fā)點(diǎn),結(jié)合有關(guān)的實(shí)物模型,通過直觀感知、操作確認(rèn)(合情推理,不要求證明)歸納出直線與平面平行的判定定理。本節(jié)課的學(xué)習(xí)對培養(yǎng)學(xué)生空間感與邏輯推理能力起到重要作用,特別是對線線平行、面面平行的判定的學(xué)習(xí)作用重大。
二、學(xué)生學(xué)習(xí)情況分析:
任教的學(xué)生在年段屬中上程度,學(xué)生學(xué)習(xí)興趣較高,但學(xué)習(xí)立幾所具備的語言表達(dá)及空間感與空間想象能力相對不足,學(xué)習(xí)方面有一定困難。
三、設(shè)計思想
2、本節(jié)課的設(shè)計遵循從具體到抽象的原則,適當(dāng)運(yùn)用多媒體輔助教學(xué)手段,借助實(shí)物模型,通過直觀感知,操作確認(rèn),合情推理,歸納出直線與平面平行的判定定理,將合情推理與演繹推理有機(jī)結(jié)合,讓學(xué)生在觀察分析、自主探索、合作交流的過程中,揭示直線與平面平行的判定、理解數(shù)學(xué)的概念,領(lǐng)會數(shù)學(xué)的思想方法,養(yǎng)成積極主動、勇于探索、自主學(xué)習(xí)的學(xué)習(xí)方式,發(fā)展學(xué)生的空間觀念和空間想象力,提高學(xué)生的數(shù)學(xué)邏輯思維能力。
四、教學(xué)目標(biāo)
通過直觀感知——觀察——操作確認(rèn)的認(rèn)識方法理解并掌握直線與平面平行的判定定理,掌握直線與平面平行的畫法并能準(zhǔn)確使用數(shù)學(xué)符號語言、文字語言表述判定定理。培養(yǎng)學(xué)生觀察、探究、發(fā)現(xiàn)的能力和空間想象能力
3、、邏輯思維能力。讓學(xué)生在觀察、探究、發(fā)現(xiàn)中學(xué)習(xí),在自主合作、交流中學(xué)習(xí),體驗學(xué)習(xí)的樂趣,增強(qiáng)自信心,樹立積極的學(xué)習(xí)態(tài)度,提高學(xué)習(xí)的自我效能感。
五、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn)是判定定理的引入與理解,難點(diǎn)是判定定理的應(yīng)用及立幾空間感、空間觀念的形成與邏輯思維能力的培養(yǎng)。
六、教學(xué)過程設(shè)計
(一)知識準(zhǔn)備、新課引入
提問1:根據(jù)公共點(diǎn)的情況,空間中直線a和平面有哪幾種位置關(guān)系?并完成下表:(多媒體幻燈片演示)
位置關(guān)系
公共點(diǎn)
符號表示
圖形表示
我們把直線與平面相交或平行的位置關(guān)系統(tǒng)稱為直線在平面外,用符號表示為a
提問2:根據(jù)
4、直線與平面平行的定義(沒有公共點(diǎn))來判定直線與平面平行你認(rèn)為方便嗎?談?wù)勀愕目捶?,并指出是否有別的判定途徑。
[設(shè)計意圖:通過提問,學(xué)生復(fù)習(xí)并歸納空間直線與平面位置關(guān)系引入本節(jié)課題,并為探尋直線與平面平行判定定理作好準(zhǔn)備。]
(二)判定定理的探求過程
1、直觀感知
提問:根據(jù)同學(xué)們?nèi)粘I畹挠^察,你們能感知到并舉出直線與平面平行的具體事例嗎?
生1:例舉日光燈與天花板,樹立的電線桿與墻面。
生2:門轉(zhuǎn)動到離開門框的任何位置時,門的邊緣線始終與門框所在的平面平行(由學(xué)生到教室門前作演示),然后教師用多媒體動畫演示。
[學(xué)情預(yù)設(shè):此處的預(yù)設(shè)與生成應(yīng)當(dāng)是很自然的,但老師要預(yù)見到可能出現(xiàn)
5、的情況如電線桿與墻面可能共面的情形及門要離開門框的位置等情形。]
2、動手實(shí)踐
教師取出預(yù)先準(zhǔn)備好的直角梯形泡沫板演示:當(dāng)把互相平行的一邊放在講臺桌面上并轉(zhuǎn)動,觀察另一邊與桌面的位置給人以平行的感覺,而當(dāng)把直角腰放在桌面上并轉(zhuǎn)動,觀察另一邊與桌面給人的印象就不平行。又如老師直立講臺,則大家會感覺到老師(視為線)與四周墻面平行,如老師向前或后傾斜則感覺老師(視為線)與左、右墻面平行,如老師向左、右傾斜,則感覺老師(視為線)與前、后墻面平行(老師也可用事先準(zhǔn)備的木條放在講臺桌上作上述情形的演示)。
[設(shè)計意圖:設(shè)置這樣動手實(shí)踐的情境,是為了讓學(xué)生更清楚地看到線面平行與否的關(guān)鍵因素是什么,使學(xué)
6、生學(xué)在情境中,思在情理中,感悟在內(nèi)心中,學(xué)自己身邊的數(shù)學(xué),領(lǐng)悟空間觀念與空間圖形性質(zhì)。]
3、探究思考
(1)上述演示的直線與平面位置關(guān)系為何有如此的不同?關(guān)鍵是什么因素起了作用呢?通過觀察感知發(fā)現(xiàn)直線與平面平行,關(guān)鍵是三個要素:①平面外一條線 ②平面內(nèi)一條直線 ③這兩條直線平行
(2)如果平面外的直線a與平面內(nèi)的一條直線b平行,那么直線a與平面平行嗎?
4、歸納確認(rèn):(多媒體幻燈片演示)
直線和平面平行的判定定理:平面外的一條直線與平面內(nèi)的一條直線平行,則該直線和這個平面平行。
簡單概括:(內(nèi)外)線線平行線面平行
符號表示:
溫馨提示:
作用:判定或證明線面平行
7、。
關(guān)鍵:在平面內(nèi)找(或作)出一條直線與面外的直線平行。
思想:空間問題轉(zhuǎn)化為平面問題
(三)定理運(yùn)用,問題探究(多媒體幻燈片演示)
1、想一想:
(1)判斷下列命題的真假?說明理由:
①如果一條直線不在平面內(nèi),則這條直線就與平面平行( )
②過直線外一點(diǎn)可以作無數(shù)個平面與這條直線平行( )
③一直線上有二個點(diǎn)到平面的距離相等,則這條直線與平面平行( )
(2)若直線a與平面內(nèi)無數(shù)條直線平行,則a與的位置關(guān)系是( )
A、a || B、a C、a ||或a D、
[學(xué)情預(yù)設(shè):設(shè)計這組問題目的是強(qiáng)調(diào)定理中三個條件的重要性,同時預(yù)設(shè)(1)中的
8、③學(xué)生可能認(rèn)為正確的,這樣就無法達(dá)到老師的預(yù)設(shè)與生成的目的,這時教師要引導(dǎo)學(xué)生思考,讓學(xué)生想象的空間更廣闊些。此外教師可用預(yù)先準(zhǔn)備好的羊毛針與泡沫板進(jìn)行演示,讓羊毛針穿過泡沫板以舉不平行的反例,如果有的學(xué)生空間想象力強(qiáng),能按老師的要求生成正確的結(jié)果則就由個別學(xué)生進(jìn)行演示。]
2、作一作:
設(shè)a、b是二異面直線,則過a、b外一點(diǎn)p且與a、b都平行的平面存在嗎?若存在請畫出平面,不存在說明理由?
先由學(xué)生討論交流,教師提問,然后教師總結(jié),并用準(zhǔn)備好的羊毛針、鐵線、泡沫板等演示平面的形成過程,最后借多媒體展示作圖的動畫過程。
[設(shè)計意圖:這是一道動手操作的問題,不僅是為了拓展加深對定理的認(rèn)識
9、,更重要的是培養(yǎng)學(xué)生空間感與思維的嚴(yán)謹(jǐn)性。]
3、證一證:
例1(見課本60頁例1):已知空間四邊形ABCD中,E、F分別是AB、AD的中點(diǎn),求證:EF || 平面BCD。
變式一:空間四邊形ABCD中,E、F、G、H分別是邊AB、BC、CD、DA中點(diǎn),連結(jié)EF、FG、GH、HE、AC、BD請分別找出圖中滿足線面平行位置關(guān)系的所有情況。(共6組線面平行)
變式二:在變式一的圖中如作PQEF,使P點(diǎn)在線段AE上、Q點(diǎn)在線段FC上,連結(jié)PH、QG,并繼續(xù)探究圖中所具有的線面平行位置關(guān)系?(在變式一的基礎(chǔ)上增加了4組線面平行),并判斷四邊形EFGH、PQGH分別是怎樣的四邊形,說明理由。
10、[設(shè)計意圖:設(shè)計二個變式訓(xùn)練,目的是通過問題探究、討論,思辨,及時鞏固定理,運(yùn)用定理,培養(yǎng)學(xué)生的識圖能力與邏輯推理能力。]
例2:如圖,在正方體ABCD—A1B1C1D1中,E、F分別是棱BC與C1D1中點(diǎn),求證:EF || 平面BDD1B1
11、
分析:根據(jù)判定定理必須在平面BDD1B1內(nèi)找(作)一條線與EF平行,聯(lián)想到中點(diǎn)問題找中點(diǎn)解決的方法,可以取BD或B1D1中點(diǎn)而證之。
思路一:取BD中點(diǎn)G連D1G、EG,可證D1GEF為平行四邊形。
思路二:取D1B1中點(diǎn)H連HB、HF,可證HFEB為平行四邊形。
[知識鏈接:根據(jù)空間問題平面化的思想,因此把找空間平行直線問題轉(zhuǎn)化為找平行四邊形或三
12、角形中位線問題,這樣就自然想到了找中點(diǎn)。平行問題找中點(diǎn)解決是個好途徑好方法。這種思想方法是解決立幾論證平行問題,培養(yǎng)邏輯思維能力的重要思想方法]
4、練一練:
練習(xí)1:見課本6頁練習(xí)1、2
練習(xí)2:將兩個全等的正方形ABCD和ABEF拼在一起,設(shè)M、N分別為AC、BF中點(diǎn),求證:MN || 平面BCE。
變式:若將練習(xí)2中M、N改為AC、BF分點(diǎn)且AM = FN,試問結(jié)論仍成立嗎?試證之。
[設(shè)計意圖:設(shè)計這組練習(xí),目的是為了鞏固與深化定理的運(yùn)用,特別是通過練習(xí)2及其變式的訓(xùn)練,讓學(xué)生能在復(fù)雜的圖形中去識圖,去尋找分析問題、解決問題的途徑與方法,以達(dá)到逐步培養(yǎng)空間感與邏輯思維能力。]
13、
(四)總結(jié)
先由學(xué)生口頭總結(jié),然后教師歸納總結(jié)(由多媒體幻燈片展示):
1、線面平行的判定定理:平面外的一條直線與平面內(nèi)的一條直線平行,則該直線與這個平面平行。
2、定理的符號表示:
簡述:(內(nèi)外)線線平行則線面平行
3、定理運(yùn)用的關(guān)鍵是找(作)面內(nèi)的線與面外的線平行,途徑有:取中點(diǎn)利用平行四邊形或三角形中位線性質(zhì)等。
七、教學(xué)反思
本節(jié)“直線與平面平行的判定”是學(xué)生學(xué)習(xí)空間位置關(guān)系的判定與性質(zhì)的第一節(jié)課,也是學(xué)生開始學(xué)習(xí)立幾演澤推理論述的思維方式方法,因此本節(jié)課學(xué)習(xí)對發(fā)展學(xué)生的空間觀念和邏輯思維能力是非常重要的。
本節(jié)課的設(shè)計遵循“直觀感知——操作確認(rèn)——思辯論證”的認(rèn)識
14、過程,注重引導(dǎo)學(xué)生通過觀察、操作交流、討論、有條理的思考和推理等活動,從多角度認(rèn)識直線和平面平行的判定方法,讓學(xué)生通過自主探索、合作交流,進(jìn)一步認(rèn)識和掌握空間圖形的性質(zhì),積累數(shù)學(xué)活動的經(jīng)驗,發(fā)展合情推理、發(fā)展空間觀念與推理能力。
本節(jié)課的設(shè)計注重訓(xùn)練學(xué)生準(zhǔn)確表達(dá)數(shù)學(xué)符號語言、文字語言及圖形語言,加強(qiáng)各種語言的互譯。比如上課開始時的復(fù)習(xí)引入,讓學(xué)生用三種語言的表達(dá),動手實(shí)踐、定理探求過程以及定理描述也注重三種語言的表達(dá),對例題的講解與分析也注意指導(dǎo)學(xué)生三種語言的表達(dá)。
本節(jié)課對定理的探求與認(rèn)識過程的設(shè)計始終貫徹直觀在先,感知在先,學(xué)自己身邊的數(shù)學(xué),感知生活中包涵的數(shù)學(xué)現(xiàn)象與數(shù)學(xué)原理,體驗數(shù)學(xué)即生活的道理,比如讓學(xué)生舉生活中能感知線面平行的例子,學(xué)生會舉出日光燈與天花板,電線桿與墻面,轉(zhuǎn)動的門等等,同時老師的舉例也很貼進(jìn)生活,如老師直立時與四周墻面平行,而向前、向后傾斜則只與左右墻面平行,而向左、右傾斜則與前后黑板面平行。然后引導(dǎo)學(xué)生從中抽象概括出定理。
本節(jié)課對定理的運(yùn)用設(shè)計了想一想、作一作、證一證、練一練等環(huán)節(jié),能從易到難,由淺入深地強(qiáng)化對定理的認(rèn)識,特別是對“證一證”中采用一題多解,一題多變的變式教學(xué),有利于培養(yǎng)學(xué)生思維的廣闊性與深刻性。
本節(jié)課的設(shè)計還注重了多媒體輔助教學(xué)的有效作用,在復(fù)習(xí)引入,定理的探求以及定理的運(yùn)用等過程中,都有效地使用了多媒體。